skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Zhang, Tianyuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 10, 2025
  2. Free, publicly-accessible full text available April 23, 2025
  3. Forte is an open-source library specialized in multireference electronic structure theories for molecular systems and the rapid prototyping of new methods. This paper gives an overview of the capabilities of Forte, its software architecture, and examples of applications enabled by the methods it implements.

     
    more » « less
    Free, publicly-accessible full text available August 14, 2025
  4. In this study, we present an efficient integral decomposition approach called the restricted-kinetic-balance resolution-of-the-identity (RKB-RI) algorithm, which utilizes a tunable RI method based on the Cholesky integral decomposition for in-core relativistic quantum chemistry calculations. The RKB-RI algorithm incorporates the restricted-kinetic-balance condition and offers a versatile framework for accurate computations. Notably, the Cholesky integral decomposition is employed not only to approximate symmetric large-component electron repulsion integrals but also those involving small-component basis functions. In addition to comprehensive error analysis, we investigate crucial conditions, such as the kinetic balance condition and variational stability, which underlie the applicability of Dirac relativistic electronic structure theory. We compare the computational cost of the RKB-RI approach with the full in-core method to assess its efficiency. To evaluate the accuracy and reliability of the RKB-RI method proposed in this work, we employ actinyl oxides as benchmark systems, leveraging their properties for validation purposes. This investigation provides valuable insights into the capabilities and performance of the RKB-RI algorithm and establishes its potential as a powerful tool in the field of relativistic quantum chemistry.

     
    more » « less
  5. null (Ed.)
    Scientists are extending the computational application of relativistic methods to ever-increasing sizes of molecular systems. To this end, reduction of the computational cost of relativistic methods through modest approximations is a welcome effort. In this work, we review several localized two-component approximations and introduce a maximally localized variant. We also extend the focus of local relativistic approximations from the ground state to excited states. Benchmark calculations on both valence and core electron absorption spectra are carried out to analyze the error incurred by using the relativistic local approximations for excited state computations. 
    more » « less