Algebraic diagrammatic construction (ADC) theory is a computationally efficient and accurate approach for simulating electronic excitations in chemical systems. However, for the simulations of excited states in molecules with unpaired electrons, the performance of ADC methods can be affected by the spin contamination in unrestricted Hartree–Fock (UHF) reference wavefunctions. In this work, we benchmark the accuracy of ADC methods for electron attachment and ionization of open-shell molecules with the UHF reference orbitals (EA/IP-ADC/UHF) and develop an approach to quantify the spin contamination in charged excited states. Following this assessment, we demonstrate that the spin contamination can be reduced by combining EA/IP-ADC with the reference orbitals from restricted open-shell Hartree–Fock (ROHF) or orbital-optimized Møller–Plesset perturbation (OMP) theories. Our numerical results demonstrate that for open-shell systems with strong spin contamination in the UHF reference, the third-order EA/IP-ADC methods with the ROHF or OMP reference orbitals are similar in accuracy to equation-of-motion coupled cluster theory with single and double excitations. 
                        more » 
                        « less   
                    This content will become publicly available on February 28, 2026
                            
                            Two-component relativistic equation-of-motion coupled cluster for electron ionization
                        
                    
    
            We present an implementation of the relativistic ionization-potential (IP) equation-of-motion coupled-cluster (EOMCC) with up to 3-hole–2-particle (3h2p) excitations that makes use of the molecular mean-field exact two-component framework and the full Dirac–Coulomb–Breit Hamiltonian. The closed-shell nature of the reference state in an X2C-IP-EOMCC calculation allows for accurate predictions of spin–orbit splittings in open-shell molecules without breaking degeneracies, as would occur in an excitation-energy EOMCC calculation carried out directly on an unrestricted open-shell reference. We apply X2C-IP-EOMCC to the ground and first excited states of the HCCX+ (X = Cl, Br, I) cations, where it is demonstrated that a large basis set (i.e., quadruple-zeta quality) and 3h2p correlation effects are necessary for accurate absolute energetics. The maximum error in calculated adiabatic IPs is on the order of 0.1 eV, whereas spin–orbit splittings themselves are accurate to ≈0.01 eV, as compared to experimentally obtained values. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2103717
- PAR ID:
- 10608832
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 162
- Issue:
- 8
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We report a study on the electronic structure and chemical bonding of the BiB molecule using high-resolution photoelectron imaging of cryogenically cooled BiB− anion. By eliminating all the vibrational hot bands, we can resolve the complicated detachment transitions due to the open-shell nature of BiB and the strong spin–orbit coupling. The electron affinity of BiB is measured to be 2.010(1) eV. The ground state of BiB− is determined to be 2Π(3/2) with a σ2π3 valence electron configuration, while the ground state of BiB is found to be 3Σ−(0+) with a σ2π2 electron configuration. Eight low-lying spin–orbit excited states [3Σ−(1), 1Δ(2), 1Σ+(0+), 3Π(2), 3Π(1), 1Π(1)], including two forbidden transitions, [3Π(0−) and 3Π(0+)], are observed for BiB as a result of electron detachment from the σ and π orbitals of BiB−. The angular distribution information from the photoelectron imaging is found to be critical to distinguish detachment transitions from the σ or π orbital for the spectral assignment. This study provides a wealth of information about the low-lying electronic states and spin–orbit coupling of BiB, demonstrating the importance of cryogenic cooling for obtaining well-resolved photoelectron spectra for size-selected clusters produced from a laser vaporization cluster source.more » « less
- 
            We derive an effective spin-Hamiltonian accounting for the shape anisotropy of the zinc blende semiconductor nanocrystals within the k · p formalism explicitly taking into account the spin–orbit split-off valence band. It is shown that, for small InP nanocrystals, neglect of the spin–orbit split-off band can lead to significant underestimation of one of the two parameters determining the exciton fine-structure splittings. This parameter is only important for nanocrystals with shape anisotropy.more » « less
- 
            Abstract The electronic structure of magnetic lanthanide atoms is fascinating from a fundamental perspective. They have electrons in a submerged open 4f shell lying beneath a filled 6s shell with strong relativistic correlations leading to a large magnetic moment and large electronic orbital angular momentum. This large angular momentum leads to strong anisotropies, i. e. orientation dependencies, in their mutual interactions. The long-ranged molecular anisotropies are crucial for proposals to use ultracold lanthanide atoms in spin-based quantum computers, the realization of exotic states in correlated matter, and the simulation of orbitronics found in magnetic technologies. Short-ranged interactions and bond formation among these atomic species have thus far not been well characterized. Efficient relativistic computations are required. Here, for the first time we theoretically determine the electronic and ro-vibrational states of heavy homonuclear lanthanide Er 2 and Tm 2 molecules by applying state-of-the-art relativistic methods. In spite of the complexity of their internal structure, we were able to obtain reliable spin–orbit and correlation-induced splittings between the 91 Er 2 and 36 Tm 2 electronic potentials dissociating to two ground-state atoms. A tensor analysis allows us to expand the potentials between the atoms in terms of a sum of seven spin–spin tensor operators simplifying future research. The strengths of the tensor operators as functions of atom separation are presented and relationships among the strengths, derived from the dispersive long-range interactions, are explained. Finally, low-lying spectroscopically relevant ro-vibrational energy levels are computed with coupled-channels calculations and analyzed.more » « less
- 
            High-spin ground-state polyradicals are an important platform due to their potential applications in magnetic and spintronic devices. However, a low high-to-low spin energy gap limits the population of the high-spin state, precluding their application at room temperature. Also, design strategies delineating control of the ground electronic state from a closed-shell low-spin to open-shell polyradical character with a high-spin ground state are not well established. Here, we report indacenodinaphthothiophene isomers fused with a 6,6-dicyanofulvene group showing a high-spin quintet ground state. Density functional theory calculations indicate that the syn - and anti -configurations have a closed-shell low-spin singlet ground state. However, the linear -configuration displays a high-spin quintet ground state, with the energy difference between the high-spin quintet to the nearest low-spin excited states calculated to be as large as 0.24 eV (≈5.60 kcal mol −1 ), exhibiting an exclusive population of the high-spin quintet state at room temperature. These molecules are compelling synthetic targets for use in magnetic and spintronic applications.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
