Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The mechanism of separation methods, for example, liquid chromatography, is realized through rapid multiple adsorption‐desorption steps leading to the dynamic equilibrium state in a mixture of molecules with different partition coefficients. Sorting of colloidal particles, including protein complexes, cells, and viruses, is limited due to a high energy barrier, up to millions kT, required to detach particles from the interface, which is in dramatic contrast to a few kT for small molecules. Such a strong interaction renders particle adsorption quasi‐irreversible. The dynamic adsorption‐desorption equilibrium is approached very slowly, if ever attainable. This limitation is alleviated with a local oscillating repulsive mechanical force generated at the microstructured stimuli‐responsive polymer interface to switch between adsorption and mechanical‐force‐facilitated desorption of the particles. Such a dynamic regime enables the separation of colloidal mixtures based on the particle‐polymer interface affinity, and it could find use in research, diagnostics, and industrial‐scale label‐free sorting of highly asymmetric mixtures of colloids and cells.
-
Abstract The mechanism of separation methods, for example, liquid chromatography, is realized through rapid multiple adsorption‐desorption steps leading to the dynamic equilibrium state in a mixture of molecules with different partition coefficients. Sorting of colloidal particles, including protein complexes, cells, and viruses, is limited due to a high energy barrier, up to millions kT, required to detach particles from the interface, which is in dramatic contrast to a few kT for small molecules. Such a strong interaction renders particle adsorption quasi‐irreversible. The dynamic adsorption‐desorption equilibrium is approached very slowly, if ever attainable. This limitation is alleviated with a local oscillating repulsive mechanical force generated at the microstructured stimuli‐responsive polymer interface to switch between adsorption and mechanical‐force‐facilitated desorption of the particles. Such a dynamic regime enables the separation of colloidal mixtures based on the particle‐polymer interface affinity, and it could find use in research, diagnostics, and industrial‐scale label‐free sorting of highly asymmetric mixtures of colloids and cells.
-
Abstract Cancer‐associated fibroblasts (CAFs) are present in many types of tumors and play a pivotal role in tumor progression and immunosuppression. Fibroblast‐activation protein (FAP), which is overexpressed on CAFs, has been indicated as a universal tumor target. However, FAP expression is not restricted to tumors, and systemic treatment against FAP often causes severe side effects. To solve this problem, a photodynamic therapy (PDT) approach is developed based on ZnF16Pc‐loaded and FAP‐specific single chain variable fragment (scFv)‐conjugated apoferritin nanoparticles, or αFAP‐Z@FRT. αFAP‐Z@FRT PDT efficiently eradicates CAFs in tumors without inducing systemic toxicity. When tested in murine 4T1 models, the treatment elicits anti‐cancer immunity, causing suppression of both primary and distant tumors, that is, the abscopal effect. Treatment efficacy is enhanced when αFAP‐Z@FRT PDT is used in combination with anti‐PD1 antibodies. Interestingly, it is found that the PDT treatment not only elicits a cellular immunity against cancer cells, but also stimulates an anti‐CAFs immunity. This is supported by an adoptive cell transfer study, where T cells taken from 4T1‐tumor‐bearing animals treated with αFAP PDT retard the growth of A549 tumors established on nude mice. Overall, this approach is unique for permitting site‐specific eradication of CAFs and inducing a broad spectrum anti‐cancer immunity.
-
Abstract Macrophages hold great potential in cancer drug delivery because they can sense chemotactic cues and home to tumors with high efficiency. However, it remains a challenge to load large amounts of therapeutics into macrophages without compromising cell functions. This study reports a silica‐based drug nanocapsule approach to solve this issue. The nanocapsule consists of a drug–silica complex filling and a solid silica sheath, and it is designed to minimally release drug molecules in the early hours of cell entry. While taken up by macrophages at high rates, the nanocapsules minimally affect cell migration in the first 6–12 h, buying time for macrophages to home to tumors and release drugs in situ. In particular, it is shown that doxorubicin (Dox) as a representative drug can be loaded into macrophages up to 16.6 pg per cell using this approach. When tested in a U87MG xenograft model, intravenously (i.v.) injected Dox‐laden macrophages show comparable tumor accumulation as untreated macrophages. Therapy leads to efficient tumor growth suppression, while causing little systematic toxicity. This study suggests a new cell platform for selective drug delivery, which can be readily extended to the treatment of other types of diseases.
-
Abstract 2D nanomaterials have attracted broad interest in the field of biomedicine owing to their large surface area, high drug‐loading capacity, and excellent photothermal conversion. However, few studies report their “enzyme‐like” catalytic performance because it is difficult to prepare enzymatic nanosheets with small size and ultrathin thickness by current synthetic protocols. Herein, a novel one‐step wet‐chemical method is first proposed for protein‐directed synthesis of 2D MnO2nanosheets (M‐NSs), in which the size and thickness can be easily adjusted by the protein dosage. Then, a unique sono‐chemical approach is introduced for surface functionalization of the M‐NSs with high dispersity/stability as well as metal‐cation‐chelating capacity, which can not only chelate64Cu radionuclides for positron emission tomography (PET) imaging, but also capture the potentially released Mn2+for enhanced biosafety. Interestingly, the resulting M‐NS exhibits excellent enzyme‐like activity to catalyze the oxidation of glucose, which represents an alternative paradigm of acute glucose oxidase for starving cancer cells and sensitizing them to thermal ablation. Featured with outstanding phototheranostic performance, the well‐designed M‐NS can achieve effective photoacoustic‐imaging‐guided synergistic starvation‐enhanced photothermal therapy. This study is expected to establish a new enzymatic phototheranostic paradigm based on small‐sized and ultrathin M‐NSs, which will broaden the application of 2D nanomaterials.