skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Zhang, Wenhui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Two disaccharides, methyl β-d-galactopyranosyl-(1→4)-α-d-glucopyranoside (1) and methyl β-d-galactopyranosyl-(1→4)-3-deoxy-α-d-ribo-hexopyranoside (3), were prepared with selective 13C-enrichment to allow measurement of six trans-O-glycosidic J-couplings (2JCOC, 3JCOCH, and 3JCOCC) in each compound. Density functional theory (DFT) was used to parameterize Karplus-like equations that relate these J-couplings to either ϕ or ψ. MA’AT analysis was applied to both linkages to determine mean values of ϕ and ψ in each disaccharide and their associated circular standard deviations (CSDs). Results show that deoxygenation at C3 of 1 has little effect on both the mean values and librational motions of the linkage torsion angles. This finding implies that, if inter-residue hydrogen bonding between O3H and O5′ of 1 is present in aqueous solution and persistent, it plays little if any role in dictating preferred linkage conformation. Hydrogen bonding may lower the energy of the preferred linkage geometry but does not determine it to any appreciable extent. Aqueous 1-μs MD simulation supports this conclusion and also indicates greater conformational flexibility in deoxydisaccharide 3 in terms of sampling several, conformationally distinct, higher-energy conformers in solution. The populations of these latter conformers are low (3–14%) and could not be validated by MA’AT analysis. If the MD model is correct, however, C3 deoxygenation does enable conformational sampling over a wider range of ϕ/ψ values, but linkage conformation in the predominant conformer is essentially identical in both 1 and 3. 
    more » « less
    Free, publicly-accessible full text available March 14, 2025
  2. Abstract

    MA'ATanalysis has been applied to two biologically‐importantO‐glycosidic linkages in two disaccharides, α‐D‐Galp‐(1→3)‐β‐D‐GalpOMe (3) and β‐D‐Galp‐(1→3)‐β‐D‐GalpOMe (4). Using density functional theory (DFT) to obtain parameterized equations relating a group of trans‐O‐glycosidic NMR spin‐couplings to eitherphi(ϕ') orpsi(ψ'), and experimental3JCOCH,2JCOC, and3JCOCCspin‐couplings measured in aqueous solution in13C‐labeled isotopomers, probability distributions ofϕ'andψ'in each linkage were determined and compared to those determined by aqueous 1‐μs molecular dynamics (MD) simulation. Good agreement was found between theMA'ATand single‐state MD conformational models of these linkages for the most part, with modest (approximately <15°) differences in the mean values ofϕ'andψ', although the envelope of allowed angles (encoded in circular standard deviations or CSDs) is consistently larger forϕ'determined fromMA'ATanalysis than from MD for both linkages. TheMA'ATmodel of the α‐Galp‐(1→3)‐β‐Galplinkage agrees well with those determined previously using conventional NMR methods (3JCOCHvalues and/or1H‐1H NOEs), but some discrepancy was observed for the β‐Galp‐(1→3)‐β‐Galplinkage, which may arise from errors in the conventions used to describe the linkage torsion angles. Statistical analyses of X‐ray crystal structures show ranges ofϕ'andψ'for both linkages that include the mean angles determined fromMA'ATanalyses, although both angles adopt a wide range of values in the crystalline state, withϕ'in β‐Galp‐(1→3)‐β‐Galplinkages showing greater‐than‐expected conformational variability.

    more » « less
  3. null (Ed.)
  4. null (Ed.)
    The emergence of Intel's Optane DC persistent memory (Optane Pmem) draws much interest in building persistent key-value (KV) stores to take advantage of its high throughput and low latency. A major challenge in the efforts stems from the fact that Optane Pmem is essentially a hybrid storage device with two distinct properties. On one hand, it is a high-speed byte-addressable device similar to DRAM. On the other hand, the write to the Optane media is conducted at the unit of 256 bytes, much like a block storage device. Existing KV store designs for persistent memory do not take into account of the latter property, leading to high write amplification and constraining both write and read throughput. In the meantime, a direct re-use of a KV store design intended for block devices, such as LSM-based ones, would cause much higher read latency due to the former property. In this paper, we propose ChameleonDB, a KV store design specifically for this important hybrid memory/storage device by considering and exploiting these two properties in one design. It uses LSM tree structure to efficiently admit writes with low write amplification. It uses an in-DRAM hash table to bypass LSM-tree's multiple levels for fast reads. In the meantime, ChameleonDB may choose to opportunistically maintain the LSM multi-level structure in the background to achieve short recovery time after a system crash. ChameleonDB's hybrid structure is designed to be able to absorb sudden bursts of a write workload, which helps avoid long-tail read latency. Our experiment results show that ChameleonDB improves write throughput by 3.3× and reduces read latency by around 60% compared with a legacy LSM-tree based KV store design. ChameleonDB provides performance competitive even with KV stores using fully in-DRAM index by using much less DRAM space. Compared with CCEH, a persistent hash table design, ChameleonDB provides 6.4× higher write throughput. 
    more » « less
  5. null (Ed.)
    The crystal structure of methyl 2-acetamido-2-deoxy-β-D-glycopyranosyl-(1→4)-β-D-mannopyranoside monohydrate, C 15 H 27 NO 11 ·H 2 O, was determined and its structural properties compared to those in a set of mono- and disaccharides bearing N -acetyl side-chains in βGlcNAc aldohexopyranosyl rings. Valence bond angles and torsion angles in these side chains are relatively uniform, but C—N (amide) and C—O (carbonyl) bond lengths depend on the state of hydrogen bonding to the carbonyl O atom and N—H hydrogen. Relative to N -acetyl side chains devoid of hydrogen bonding, those in which the carbonyl O atom serves as a hydrogen-bond acceptor display elongated C—O and shortened C—N bonds. This behavior is reproduced by density functional theory (DFT) calculations, indicating that the relative contributions of amide resonance forms to experimental C—N and C—O bond lengths depend on the solvation state, leading to expectations that activation barriers to amide cis – trans isomerization will depend on the polarity of the environment. DFT calculations also revealed useful predictive information on the dependencies of inter-residue hydrogen bonding and some bond angles in or proximal to β-(1→4) O -glycosidic linkages on linkage torsion angles ϕ and ψ. Hypersurfaces correlating ϕ and ψ with the linkage C—O—C bond angle and total energy are sufficiently similar to render the former a proxy of the latter. 
    more » « less
  6. The crystal structure of methyl α-D-mannopyranosyl-(1→3)-2- O -acetyl-β-D-mannopyranoside monohydrate, C 15 H 26 O 12 ·H 2 O, ( II ), has been determined and the structural parameters for its constituent α-D-mannopyranosyl residue compared with those for methyl α-D-mannopyranoside. Mono- O -acetylation appears to promote the crystallization of ( II ), inferred from the difficulty in crystallizing methyl α-D-mannopyranosyl-(1→3)-β-D-mannopyranoside despite repeated attempts. The conformational properties of the O -acetyl side chain in ( II ) are similar to those observed in recent studies of peracetylated mannose-containing oligosaccharides, having a preferred geometry in which the C2—H2 bond eclipses the C=O bond of the acetyl group. The C2—O2 bond in ( II ) elongates by ∼0.02 Å upon O -acetylation. The phi (φ) and psi (ψ) torsion angles that dictate the conformation of the internal O -glycosidic linkage in ( II ) are similar to those determined recently in aqueous solution by NMR spectroscopy for unacetylated ( II ) using the statistical program MA′AT , with a greater disparity found for ψ (Δ = ∼16°) than for φ (Δ = ∼6°). 
    more » « less