skip to main content

Search for: All records

Creators/Authors contains: "Zhang, Wenlong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2023
  2. Free, publicly-accessible full text available July 1, 2023
  3. Additive manufacturing (AM), also known as three-dimensional (3D) printing, is thriving as an effective and robust method in fabricating architected piezoelectric structures, yet most of the commonly adopted printing techniques often face the inherent speed-accuracy trade-off, limiting their speed in manufacturing sophisticated parts containing micro-/nanoscale features. Herein, stabilized, photo-curable resins comprising chemically functionalized piezoelectric nanoparticles (PiezoNPs) were formulated, from which microscale architected 3D piezoelectric structures were printed continuously via micro continuous liquid interface production ( μ CLIP) at speeds of up to ~60  μ m s -1 , which are more than 10 times faster than the previously reported stereolithography-based works. The 3D-printed functionalized barium titanate (f-BTO) composites reveal a bulk piezoelectric charge constant d 33 of 27.70 pC N -1 with the 30 wt% f-BTO. Moreover, rationally designed lattice structures that manifested enhanced, tailorable piezoelectric sensing performance as well as mechanical flexibility were tested and explored in diverse flexible and wearable self-powered sensing applications, e.g., motion recognition and respiratory monitoring.
    Free, publicly-accessible full text available July 12, 2023
  4. Recent work in fluid-driven soft robots has demonstrated the potential to achieve high power-to-weight ratios, low fabrication costs, and improved safety, making them well suited for interactive tasks. However, the low speed of pneumatic actuation prevents use of these robots in more dynamic tasks. This paper aims to design, characterize, and model a bistable elastomeric actuator for swift tasks (BEAST). This actuator enables both fast actuation and mechanical compliance, and is designed by integrating silicone and polyethylene terephthalate (PET) in a bendy straw structure. The BEAST contains three states - compressed, natural, and stretched states. Two operation modes - compressed and stretched modes, are defined to model the continuous elongation dynamics before and after the quickly switching around the natural state. A set of design rules and a novel fabrication method are presented to develop the BEAST. The actuator characterization shows that the maximum extension ratio, snapping speed, and output force of the BEAST to be 0.58, 1.5m/s, and 48N, respectively. A hybrid linear parameter varying (HLPV) model is developed to describe the pressure-dependent dynamics of the actuator. The actuators are evaluated in an object sorting task where both fast and gentle behaviors are demonstrated.
    Free, publicly-accessible full text available April 4, 2023
  5. Free, publicly-accessible full text available December 1, 2022
  6. Abstract

    Assistive wearable soft robotic systems have recently made a surge in the field of biomedical robotics, as soft materials allow safe and transparent interactions between the users and devices. A recent interest in the field of soft pneumatic actuators (SPAs) has been the introduction of a new class of actuators called fabric soft pneumatic actuators (FSPAs). These actuators exploit the unique capabilities of different woven and knit textiles, including zero initial stiffness, full collapsibility, high power-to-weight ratio, puncture resistant, and high stretchability. By using 2D manufacturing methods we are able to create actuators that can extend, contract, twist, bend, and perform a combination of these motions in 3D space. This paper presents a comprehensive simulation and design tool for various types of FSPAs using finite element method (FEM) models. The FEM models are developed and experimentally validated, in order to capture the complex non-linear behavior of individual actuators optimized for free displacement and blocked force, applicable for wearable assistive tasks.