skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Yangwen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 28, 2024
  2. Abstract We investigate an inverse scattering problem for a thin inhomogeneous scatterer in R m , m = 2, 3, which we model as an m − 1 dimensional open surface. The scatterer is referred to as a screen. The goal is to design target signatures that are computable from scattering data in order to detect changes in the material properties of the screen. This target signature is characterized by a mixed Steklov eigenvalue problem for a domain whose boundary contains the screen. We show that the corresponding eigenvalues can be determined from appropriately modified scattering data by using the generalized linear sampling method. A weaker justification is provided for the classical linear sampling method. Numerical experiments are presented to support our theoretical results. 
    more » « less
  3. In this paper we consider the inverse problem of determining structural properties of a thin anisotropic and dissipative inhomogeneity in \begin{document}$ {\mathbb R}^m $\end{document}, \begin{document}$ m = 2, 3 $\end{document} from scattering data. In the asymptotic limit as the thickness goes to zero, the thin inhomogeneity is modeled by an open \begin{document}$ m-1 $\end{document} dimensional manifold (here referred to as screen), and the field inside is replaced by jump conditions on the total field involving a second order surface differential operator. We show that all the surface coefficients (possibly matrix valued and complex) are uniquely determined from far field patterns of the scattered fields due to infinitely many incident plane waves at a fixed frequency. Then we introduce a target signature characterized by a novel eigenvalue problem such that the eigenvalues can be determined from measured scattering data, adapting the approach in [20]. Changes in the measured eigenvalues are used to identified changes in the coefficients without making use of the governing equations that model the healthy screen. In our investigation the shape of the screen is known, since it represents the object being evaluated. We present some preliminary numerical results indicating the validity of our inversion approach

     
    more » « less
  4. We consider an unconstrained tangential Dirichlet boundary control problem for the Stokes equations with an $ L^2 $ penalty on the boundary control.  The contribution of this paper is twofold.  First, we obtain well-posedness and regularity results for the tangential Dirichlet control problem on a convex polygonal domain.  The analysis contains new features not found in similar Dirichlet control problems for the Poisson equation; an interesting result is that the optimal control has higher local regularity on the individual edges of the domain compared to the global regularity on the entire boundary.  Second, we propose and analyze a hybridizable discontinuous Galerkin (HDG) method to approximate the solution.  For convex polygonal domains, our theoretical convergence rate for the control is optimal with respect to the global regularity on the entire boundary.  We present numerical experiments to demonstrate the performance of the HDG method. 
    more » « less