Abstract In this paper, we consider the inverse scattering problem associated with an anisotropic medium with a conductive boundary. We will assume that the corresponding far–field pattern is known/measured and we consider two inverse problems. First, we show that the far–field data uniquely determines the boundary coefficient. Next, since it is known that anisotropic coefficients are not uniquely determined by this data we will develop a qualitative method to recover the scatterer. To this end, we study the so–called monotonicity method applied to this inverse shape problem. This method has recently been applied to some inverse scattering problems but this is the first time it has been applied to an anisotropic scatterer. This method allows one to recover the scatterer by considering the eigenvalues of an operator associated with the far–field operator. We present some simple numerical reconstructions to illustrate our theory in two dimensions. For our reconstructions, we need to compute the adjoint of the Herglotz wave function as an operator mapping intoH1of a small ball.
more »
« less
Target signatures for thin surfaces
Abstract We investigate an inverse scattering problem for a thin inhomogeneous scatterer in R m , m = 2, 3, which we model as an m − 1 dimensional open surface. The scatterer is referred to as a screen. The goal is to design target signatures that are computable from scattering data in order to detect changes in the material properties of the screen. This target signature is characterized by a mixed Steklov eigenvalue problem for a domain whose boundary contains the screen. We show that the corresponding eigenvalues can be determined from appropriately modified scattering data by using the generalized linear sampling method. A weaker justification is provided for the classical linear sampling method. Numerical experiments are presented to support our theoretical results.
more »
« less
- PAR ID:
- 10329886
- Date Published:
- Journal Name:
- Inverse Problems
- Volume:
- 38
- Issue:
- 2
- ISSN:
- 0266-5611
- Page Range / eLocation ID:
- 025011
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we consider the inverse problem of recovering a sound soft scatterer from the measured scattered field. The scattered field is assumed to be induced by a point source on a curve/surface that is known. Here, we propose and analyze new direct sampling methods for this problem. The first method we consider uses a far-field transformation of the near-field data, which allows us to derive explicit bounds in the resolution analysis for the direct sampling method’s imaging functional. Two direct sampling methods are studied, using the far-field transformation. For these imaging functionals, we use the Funk–Hecke identities to study the resolution analysis. We also study a direct sampling method for the case of the given Cauchy data. Numerical examples are given to show the applicability of the new imaging functionals for recovering a sound soft scatterer with full and partial aperture data.more » « less
-
In this paper we consider the inverse problem of determining structural properties of a thin anisotropic and dissipative inhomogeneity in \begin{document}$$ {\mathbb R}^m $$\end{document}, \begin{document}$ m = 2, 3 $$\end{document} from scattering data. In the asymptotic limit as the thickness goes to zero, the thin inhomogeneity is modeled by an open \begin{document}$$ m-1 $$\end{document}$ dimensional manifold (here referred to as screen), and the field inside is replaced by jump conditions on the total field involving a second order surface differential operator. We show that all the surface coefficients (possibly matrix valued and complex) are uniquely determined from far field patterns of the scattered fields due to infinitely many incident plane waves at a fixed frequency. Then we introduce a target signature characterized by a novel eigenvalue problem such that the eigenvalues can be determined from measured scattering data, adapting the approach in [20]. Changes in the measured eigenvalues are used to identified changes in the coefficients without making use of the governing equations that model the healthy screen. In our investigation the shape of the screen is known, since it represents the object being evaluated. We present some preliminary numerical results indicating the validity of our inversion approachmore » « less
-
We consider the inverse problem of determining the geometry of penetrable objects from scattering data generated by one incident wave at a fixed frequency. We first study an orthogonality sampling type method which is fast, simple to implement, and robust against noise in the data. This sampling method has a new imaging functional that is applicable to data measured in near field or far field regions. The resolution analysis of the imaging functional is analyzed where the explicit decay rate of the functional is established. A connection with the orthogonality sampling method by Potthast is also studied. The sampling method is then combined with a deep neural network to solve the inverse scattering problem. This combined method can be understood as a network using the image computed by the sampling method for the first layer and followed by the U-net architecture for the rest of the layers. The fast computation and the knowledge from the results of the sampling method help speed up the training of the network. The combination leads to a significant improvement in the reconstruction results initially obtained by the sampling method. The combined method is also able to invert some limited aperture experimental data without any additional transfer training.more » « less
-
Nguyen, Dinh-Liem; Nguyen, Loc; Nguyen, Thi-Phong (Ed.)This paper is concerned with the numerical solution to the direct and inverse electromagnetic scattering problem for bi-anisotropic periodic structures. The direct problem can be reformulated as an integro-di erential equation. We study the existence and uniqueness of solution to the latter equation and analyze a spectral Galerkin method to solve it. This spectral method is based on a periodization technique which allows us to avoid the evaluation of the quasiperiodic Green's tensor and to use the fast Fourier transform in the numerical implementation of the method. For the inverse problem, we study the orthogonality sampling method to reconstruct the periodic structures from scattering data generated by only two incident fields. The sampling method is fast, simple to implement, regularization free, and very robust against noise in the data. Numerical examples for both direct and inverse problems are presented to examine the efficiency of the numerical solvers.more » « less