- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Byrne, Maria (2)
-
Cisternas, Paula (2)
-
Davidson, Phillip L (2)
-
Devens, Hannah R (2)
-
Edgar, Allison (2)
-
Fan, Guangyi (2)
-
Guo, Haobing (2)
-
Koop, Demian (2)
-
Massri, Abdull J (2)
-
Swart, Jane S (2)
-
Wang, Lingyu (2)
-
Wray, Gregory A (2)
-
Zhang, He (2)
-
Zhang, Yaolei (2)
-
Berrio, Alejandro (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Changes in developmental gene regulatory networks (dGRNs) underlie much of the diversity of life, but the evolutionary mechanisms that operate on regulatory interactions remain poorly understood. Closely related species with extreme phenotypic divergence provide a valuable window into the genetic and molecular basis for changes in dGRNs and their relationship to adaptive changes in organismal traits. Here we analyse genomes, epigenomes and transcriptomes during early development in two Heliocidaris sea urchin species that exhibit highly divergent life histories and in an outgroup species. Positive selection and chromatin accessibility modifications within putative regulatory elements are enriched on the branch leading to the derived life history, particularly near dGRN genes. Single-cell transcriptomes reveal a dramatic delay in cell fate specification in the derived state, which also has far fewer open chromatin regions, especially near conserved cell fate specification genes. Experimentally perturbing key transcription factors reveals profound evolutionary changes to early embryonic patterning events, disrupting regulatory interactions previously conserved for ~225 million years. These results demonstrate that natural selection can rapidly reshape developmental gene expression on a broad scale when selective regimes abruptly change. More broadly, even highly conserved dGRNs and patterning mechanisms in the early embryo remain evolvable under appropriate ecological circumstances.more » « less
-
Davidson, Phillip L; Guo, Haobing; Swart, Jane S; Massri, Abdull J; Edgar, Allison; Wang, Lingyu; Devens, Hannah R; Koop, Demian; Cisternas, Paula; Zhang, He; et al (, Nature ecology evolution)Changes in developmental gene regulatory networks (dGRNs) underlie much of the diversity of life, but the evolutionary mechanisms that operate on interactions with these networks remain poorly understood. Closely related species with extreme phenotypic divergence provide a valuable window into the genetic and molecular basis for changes in dGRNs and their relationship to adaptive changes in organismal traits. Here we analyze genomes, epigenomes, and transcriptomes during early development in two sea urchin species in the genus Heliocidaris that exhibit highly divergent life histories and in an outgroup species. Signatures of positive selection and changes in chromatin status within putative gene regulatory elements are both enriched on the branch leading to the derived life history, and particularly so near core dGRN genes; in contrast, positive selection within protein-coding regions have at most a modest enrichment in branch and function. Single-cell transcriptomes reveal a dramatic delay in cell fate specification in the derived state, which also has far fewer open chromatin regions, especially near dGRN genes with conserved roles in cell fate specification. Experimentally perturbing the function of three key transcription factors reveals profound evolutionary changes in the earliest events that pattern the embryo, disrupting regulatory interactions previously conserved for ~225 million years. Together, these results demonstrate that natural selection can rapidly reshape developmental gene expression on a broad scale when selective regimes abruptly change and that even highly conserved dGRNs and patterning mechanisms in the early embryo remain evolvable under appropriate ecological circumstances.more » « less
An official website of the United States government

Full Text Available