Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Three‐Dimensional Habitat Structure Drives Avian Functional and Trait Diversity Across North AmericaABSTRACT Understanding how three‐dimensional (3D) habitat structure drives biodiversity patterns is key to predicting how habitat alteration and loss will affect species and community‐level patterns in the future. To date, few studies have contrasted the effects of 3D habitat composition with those of 3D habitat configuration on biodiversity, with existing investigations often limited to measures of taxonomic diversity (i.e., species richness). Here, we examined the influence of Light Detecting and Ranging (LiDAR)‐derived 3D habitat structure–both its composition and configuration–on multiple facets of bird diversity. Specifically, we used data from the National Ecological Observatory Network (NEON) to test the associations between 11 measures of 3D habitat structure and avian species richness, functional and trait diversity, and phylogenetic diversity. We found that 3D habitat structure was the most consistent predictor of avian functional and trait diversity, with little to no effect on species richness or phylogenetic diversity. Functional diversity and individual trait characteristics were strongly associated with both 3D habitat composition and configuration, but the magnitude and the direction of the effects varied across the canopy, subcanopy, midstory, and understory vertical strata. Our findings suggest that 3D habitat structure influences avian diversity through its effects on traits. By examining the effects of multiple aspects of habitat structure on multiple facets of avian diversity, we provide a broader framework for future investigations on habitat structure.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Free, publicly-accessible full text available December 1, 2025
-
Abstract Earlier snowmelt, warmer temperatures and herbivory are among the factors that influence high-latitude tundra productivity near the town of Utqiaġvik in northern Alaska. However, our understanding of the potential interactions between these factors is limited. MODIS observations provide cover fractions of vegetation, snow, standing water, and soil, and fractional absorption of photosynthetically active radiation by canopy chlorophyll (fAPARchl) per pixel. Here, we evaluated a recent time-period (2001–2014) that the tundra experienced large interannual variability in vegetation productivity metrics (i.e. fAPARchland APARchl), which was explainable by both abiotic and biotic factors. We found earlier snowmelt to increase soil and vegetation cover, and productivity in June, while warmer temperatures significantly increased monthly productivity. However, abiotic factors failed to explain stark decreases in productivity during August of 2008, which coincided with a severe lemming outbreak. MODIS observations found this tundra ecosystem to completely recover two years later, resulting in elevated productivity. This study highlights the potential roles of both climate and herbivory in modulating the interannual variability of remotely retrieved plant productivity metrics in Arctic coastal tundra ecosystems.more » « less
-
Abstract. Near-surface air temperature (Ta) is a key variable in global climatestudies. A global gridded dataset of daily maximum and minimum Ta (Tmax and Tmin) is particularly valuable and critically needed inthe scientific and policy communities but is still not available. In this paper, we developed a global dataset of daily Tmax and Tminat 1 km resolution over land across 50∘ S–79∘ N from 2003 to 2020 through the combined use of ground-station-basedTa measurements and satellite observations (i.e., digital elevation model and land surface temperature) via a state-of-the-artstatistical method named Spatially Varying Coefficient Models with Sign Preservation (SVCM-SP). The root mean square errors in our estimates rangedfrom 1.20 to 2.44 ∘C for Tmax and 1.69 to 2.39 ∘C for Tmin. We found that the accuracies were affectedprimarily by land cover types, elevation ranges, and climate backgrounds. Our dataset correctly represents a negative relationship betweenTa and elevation and a positive relationship between Ta and land surface temperature; it captured spatial and temporalpatterns of Ta realistically. This global 1 km gridded daily Tmax and Tmin dataset is the first of its kind, and weexpect it to be of great value to global studies such as the urban heat island phenomenon, hydrological modeling, and epidemic forecasting. The data havebeen published by Iowa State University at https://doi.org/10.25380/iastate.c.6005185 (Zhang and Zhou, 2022).more » « less
-
Full waveform (FW) LiDAR holds great potential for retrieving vegetation structure parameters at a high level of detail, but this prospect is constrained by practical factors such as the lack of available handy processing tools and the technical intricacy of waveform processing. This study introduces a new product named the Hyper Point Cloud (HPC), derived from FW LiDAR data, and explores its potential applications, such as tree crown delineation using the HPC-based intensity and percentile height (PH) surfaces, which shows promise as a solution to the constraints of using FW LiDAR data. The results of the HPC present a new direction for handling FW LiDAR data and offer prospects for studying the mid-story and understory of vegetation with high point density (~182 points/m2). The intensity-derived digital surface model (DSM) generated from the HPC shows that the ground region has higher maximum intensity (MAXI) and mean intensity (MI) than the vegetation region, while having lower total intensity (TI) and number of intensities (NI) at a given grid cell. Our analysis of intensity distribution contours at the individual tree level exhibit similar patterns, indicating that the MAXI and MI decrease from the tree crown center to the tree boundary, while a rising trend is observed for TI and NI. These intensity variable contours provide a theoretical justification for using HPC-based intensity surfaces to segment tree crowns and exploit their potential for extracting tree attributes. The HPC-based intensity surfaces and the HPC-based PH Canopy Height Models (CHM) demonstrate promising tree segmentation results comparable to the LiDAR-derived CHM for estimating tree attributes such as tree locations, crown widths and tree heights. We envision that products such as the HPC and the HPC-based intensity and height surfaces introduced in this study can open new perspectives for the use of FW LiDAR data and alleviate the technical barrier of exploring FW LiDAR data for detailed vegetation structure characterization.more » « less
An official website of the United States government
