Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2023
-
Wound healing is one of the most complex processes in the human body, supported by many cellular events that are tightly coordinated to repair the wound efficiently. Chronic wounds have potentially life-threatening consequences. Traditional wound dressings come in direct contact with wounds to help them heal and avoid further complications. However, traditional wound dressings have some limitations. These dressings do not provide real-time information on wound conditions, leading clinicians to miss the best time for adjusting treatment. Moreover, the current diagnosis of wounds is relatively subjective. Wearable electronics have become a unique platform to potentially monitor wound conditions in a continuous manner accurately and even to serve as accelerated healing vehicles. In this review, we briefly discuss the wound status with some objective parameters/biomarkers influencing wound healing, followed by the presentation of various novel wearable devices used for monitoring wounds and accelerating wound healing. We further summarize the associated device working principles. This review concludes by highlighting some major challenges in wearable devices toward wound healing that need to be addressed by the research community.
-
Motile cells manifest increased migration speed and directionality in gradients of stimuli, including chemoattractants, electrical potential, and substratum stiffness. Here, we demonstrate that Dictyostelium cells move directionally in response to an electric field with specific acceleration/deceleration kinetics of directionality and migration speed. Detailed analyses of the migration kinetics suggest that migration speed and directionality are separately regulated by Gβ and RasG, respectively, in EF-directed cell migration. Cells lacking Gβ, which is essential for all chemotactic responses in Dictyostelium, showed EF-directed cell migration with the same increase in directionality in an EF as wild-type cells. However, these cells failed to show induction of the migration speed upon EF stimulation as much as wild-type cells. Loss of RasG, a key regulator of chemoattractant-directed cell migration, resulted in almost complete loss of directionality, but similar acceleration/deceleration kinetics of migration speed as wild-type cells. These results indicate that Gβ and RasG are required for the induction of migration speed and directionality, respectively, in response to an EF, suggesting separation of migration speed and directionality even with intact feedback loops between mechanical and signaling networks.