skip to main content

Search for: All records

Creators/Authors contains: "Zhao, Peiyi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Logic-in-Memory (LIM) architectures offer potential approaches to attaining such throughput goals within area and energy constraints starting with the lowest layers of the hardware stack. In this paper, we develop a Spintronic Logic-in-Memory (S-LIM) XNOR neural network (S-LIM XNN) which can perform binary convolution with reconfigurable in-memory logic without supplementing distinct logic circuits for computation within the memory module itself. Results indicate that the proposed S-LIM XNN designs achieve 1.2-fold energy reduction, 1.26-fold throughput increase, and 1.4-fold accuracy improvement compared to the state-of-the-art binarized convolutional neural network hardware. Design considerations, architectural approaches, and the impact of process variation on the proposed hybrid spin-CMOS design are identified and assessed, including comparisons and recommendations for future directions with respect to LIM approaches for neuromorphic computing. 
    more » « less