skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Low-Energy Acceleration of Binarized Convolutional Neural Networks using a Spin Hall Effect based Logic-in-Memory Architecture
Logic-in-Memory (LIM) architectures offer potential approaches to attaining such throughput goals within area and energy constraints starting with the lowest layers of the hardware stack. In this paper, we develop a Spintronic Logic-in-Memory (S-LIM) XNOR neural network (S-LIM XNN) which can perform binary convolution with reconfigurable in-memory logic without supplementing distinct logic circuits for computation within the memory module itself. Results indicate that the proposed S-LIM XNN designs achieve 1.2-fold energy reduction, 1.26-fold throughput increase, and 1.4-fold accuracy improvement compared to the state-of-the-art binarized convolutional neural network hardware. Design considerations, architectural approaches, and the impact of process variation on the proposed hybrid spin-CMOS design are identified and assessed, including comparisons and recommendations for future directions with respect to LIM approaches for neuromorphic computing.  more » « less
Award ID(s):
1739635
PAR ID:
10103926
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Emerging Topics in Computing
Volume:
99
Issue:
1
ISSN:
2376-4562
Page Range / eLocation ID:
1-14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Using binarized neural network (BNN) as an alternative to the conventional convolutional neural network is a promising candidate to answer the demand of using human brain-inspired in applications with limited hardware and power resources, such as biomedical devices, IoT edge sensors, and other battery-operated devices. Using nonvolatile memory elements like MTJ devices in a LiM-based architecture can eliminate the need to access and use external memory which can significantly reduce the power consumption and area overhead. In addition, by using adiabatic-based designs, a significant part of the consumed power can be recovered to the power source which leads to a huge reduction in power consumption which is vital in applications with limited power and hardware resources. In this paper by using nonvolatile MTJ devices in a LiM architecture and using adiabatic-based circuits, an XNOR/XOR synapse and neuron is proposed. The proposed design offers 97% improvement in comparison with its state-of-the-art counterparts in case of power consumption. Also, it achieves at least 7% lower area compared to other counterparts which makes the proposed design a promising candidate for hardware implementation of BNNs. 
    more » « less
  2. Spiking neural networks (SNNs) are powerful models of spatiotemporal computation and are well suited for deployment on resource-constrained edge devices and neuromorphic hardware due to their low power consumption. Leveraging attention mechanisms similar to those found in their artificial neural network counterparts, recently emerged spiking transformers have showcased promising performance and efficiency by capitalizing on the binary nature of spiking operations. Recognizing the current lack of dedicated hardware support for spiking transformers, this paper presents the first work on 3D spiking transformer hardware architecture and design methodology. We present an architecture and physical design co-optimization approach tailored specifically for spiking transformers. Through memory-on-logic and logic-on-logic stacking enabled by 3D integration, we demonstrate significant energy and delay improvements compared to conventional 2D CMOS integration. 
    more » « less
  3. Channel decoders are key computing modules in wired/wireless communication systems. Recently neural network (NN)-based decoders have shown their promising error-correcting performance because of their end-to-end learning capability. However, compared with the traditional approaches, the emerging neural belief propagation (NBP) solution suffers higher storage and computational complexity, limiting its hardware performance. To address this challenge and develop a channel decoder that can achieve high decoding performance and hardware performance simultaneously, in this paper we take a first step towards exploring SRAM-based in-memory computing for efficient NBP channel decoding. We first analyze the unique sparsity pattern in the NBP processing, and then propose an efficient and fully Digital Sparse In-Memory Matrix vector Multiplier (DSPIMM) computing platform. Extensive experiments demonstrate that our proposed DSPIMM achieves significantly higher energy efficiency and throughput than the state-of-the-art counterparts. 
    more » « less
  4. In this paper, we propose MRIMA, as a novel MRAM-based In-Memory Accelerator for non-volatile, flexible, and efficient in-memory computing. MRIMA transforms current Spin Transfer Torque Magnetic Random Access Memory (STT-MRAM) arrays to massively parallel computational units capable of working as both non-volatile memory and in-memory logic. Instead of integrating complex logic units in cost-sensitive memory, MRIMA exploits hardware-friendly bit-line computing methods to implement complete Boolean logic functions between operands within a memory array in a single clock cycle, overcoming the multi-cycle logic issue in contemporary Processing-In-Memory (PIM) platforms. We present practical case studies to demonstrate MRIMA’s acceleration for binary-weight and low bit-width Convolutional Neural Networks (CNN) as well as data encryption. Our device-to-architecture co-simulation results on CNN acceleration demonstrate that MRIMA can obtain 1.7× better energy-efficiency and 11.2× speed-up compared to ASICs, and, 1.8× better energy-efficiency and 2.4× speed-up over the best DRAM-based PIM solutions. As an AES in-memory encryption engine, MRIMA shows 77% and 21% lower energy consumption compared to CMOS-ASIC and recent domain wall-based design, respectively. 
    more » « less
  5. Convolutional neural network (CNN)-based object detection has achieved very high accuracy; e.g., single-shot multi-box detectors (SSDs) can efficiently detect and localize various objects in an input image. However, they require a high amount of computation and memory storage, which makes it difficult to perform efficient inference on resource-constrained hardware devices such as drones or unmanned aerial vehicles (UAVs). Drone/UAV detection is an important task for applications including surveillance, defense, and multi-drone self-localization and formation control. In this article, we designed and co-optimized an algorithm and hardware for energy-efficient drone detection on resource-constrained FPGA devices. We trained an SSD object detection algorithm with a custom drone dataset. For inference, we employed low-precision quantization and adapted the width of the SSD CNN model. To improve throughput, we use dual-data rate operations for DSPs to effectively double the throughput with limited DSP counts. For different SSD algorithm models, we analyze accuracy or mean average precision (mAP) and evaluate the corresponding FPGA hardware utilization, DRAM communication, and throughput optimization. We evaluated the FPGA hardware for a custom drone dataset, Pascal VOC, and COCO2017. Our proposed design achieves a high mAP of 88.42% on the multi-drone dataset, with a high energy efficiency of 79 GOPS/W and throughput of 158 GOPS using the Xilinx Zynq ZU3EG FPGA device on the Open Vision Computer version 3 (OVC3) platform. Our design achieves 1.1 to 8.7× higher energy efficiency than prior works that used the same Pascal VOC dataset, using the same FPGA device, but at a low-power consumption of 2.54 W. For the COCO dataset, our MobileNet-V1 implementation achieved an mAP of 16.8, and 4.9 FPS/W for energy-efficiency, which is ∼ 1.9× higher than prior FPGA works or other commercial hardware platforms. 
    more » « less