skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhao, Siqian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Simple random negative sampling is a technique used to enhance decision-making in sequential models with numerous potential negative instances, like recommender systems. However, it ignores the patterns that can be discovered in complex sequences to select the most informative negative samples. In this paper, we address this challenge by introducing a Neighborhood-Aware Negative Sampling (NANS) technique in the context of student knowledge modeling (KM) and behavior modeling (BM). In the education domain, KM quantifies student knowledge based on past performance, while BM focuses on behaviors like student preferences of questions. With the vast number of problems to choose from and the intricate relationship between student knowledge and behavior, selecting the proper negative samples becomes a notable challenge in this problem. NANS, along with our proposed multi-objective, multi-task sequential model for KM and BM, NANS-KoBeM frames the simultaneous modeling of student knowledge and question selection as a multi-task learning problem with dual objectives: predicting students’ performance and their question selections. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  2. Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)
    Knowledge Tracing (KT) focuses on quantifying student knowledge according to the student's past performance. While KT models focus on modeling student knowledge, they miss the behavioral aspect of learning, such as the types of learning materials that the students choose to learn from. This is mainly because traditional knowledge tracing (KT) models only consider assessed activities, like solving questions. Recently, there has been a growing interest in multi-type KT which considers both assessed and non-assessed activities (like video lectures). Since multi-type KT models include different learning material types, they present a new opportunity to investigate student behavior, as in the choice of the learning material type, along with student knowledge. We argue that student knowledge can affect their behavior, and student interest in learning materials may affect their knowledge. In this paper, we model the relationship between students' knowledge states and their choice of learning activities. To this end, we propose Pareto-TAMKOT which frames the simultaneous learning of student knowledge and behavior as a multi-task learning problem. It employs a transition-aware multi-activity KT method for two objectives: modeling student knowledge and student behavior. Pareto-TAMKOT uses the Pareto Multi-task learning algorithm (Pareto MTL) to solve this multi-objective optimization problem. We evaluate Pareto-TAMKOT on one real-world dataset, demonstrating the benefit of approaching student knowledge and behavior modeling as a multi-task learning problem. 
    more » « less
  3. Marked temporal point process models (MTPPs) aim to model event sequences and event markers (associated features) in continuous time. These models have been applied to various application domains where capturing event dynamics in continuous time is beneficial, such as education systems, social networks, and recommender systems. However, current MTPPs suffer from two major limitations, i.e., inefficient representation of event dynamic’s influence on marker distribution and losing fine-grained representation of historical marker distributions in the modeling. Motivated by these limitations, we propose a novel model calledMarked Point Processes withMemory-EnhancedNeural Networks (MoMENt) that can capture the bidirectional interrelations between markers and event dynamics while providing fine-grained marker representations. Specifically, MoMENt is constructed of two concurrent networks: Recurrent Activity Updater (RAU) to capture model event dynamics and Memory-Enhanced Marker Updater (MEMU) to represent markers. Both RAU and MEMU components are designed to update each other at every step to model the bidirectional influence of markers and event dynamics. To obtain a fine-grained representation of maker distributions, MEMU is devised with external memories that model detailed marker-level features with latent component vectors. Our extensive experiments on six real-world user interaction datasets demonstrate that MoMENt can accurately represent users’ activity dynamics, boosting time, type, and marker predictions, as well as recommendation performance up to 76.5%, 65.6%, 77.2%, and 57.7%, respectively, compared to baseline approaches. Furthermore, our case studies show the effectiveness of MoMENt in providing meaningful and fine-grained interpretations of user-system relations over time, e.g., how user choices influence their future preferences in the recommendation domain. 
    more » « less
  4. Accurate modeling of student knowledge is essential for large-scale online learning systems that are increasingly used for student training. Knowledge tracing aims to model student knowledge state given the student's sequence of learning activities. Modern Knowledge tracing (KT) is usually formulated as a supervised sequence learning problem to predict students' future practice performance according to their past observed practice scores by summarizing student knowledge state as a set of evolving hidden variables. Because of this formulation, many current KT solutions are not fit for modeling student learning from non-assessed learning activities with no explicit feedback or score observation (e.g., watching video lectures that are not graded). Additionally, these models cannot explicitly represent the dynamics of knowledge transfer among different learning activities, particularly between the assessed (e.g., quizzes) and non-assessed (e.g., video lectures) learning activities. In this paper, we propose Transition-Aware Multi-activity Knowledge Tracing (TAMKOT), which models knowledge transfer between learning materials, in addition to student knowledge, when students transition between and within assessed and non-assessed learning materials. TAMKOT is formulated as a deep recurrent multi-activity learning model that explicitly learns knowledge transfer by activating and learning a set of knowledge transfer matrices, one for each transition type between student activities. Accordingly, our model allows for representing each material type in a different yet transferrable latent space while maintaining student knowledge in a shared space. We evaluate our model on three real-world publicly available datasets and demonstrate TAMKOT's capability in predicting student performance and modeling knowledge transfer. 
    more » « less
  5. Procrastination is a major issue faced by students which can lead to negative impacts on their academic performance and mental health. Productivity tools aim to help individuals to alleviate this behavior by providing self-regulatory support. However, the processes of how these applications help students conquer academic procrastination are under-explored. Particularly, it is essential to understand what aspects of these applications help which kinds of students in accomplishing their academic tasks. In this paper, we address this gap by presenting an academic planning and time management app (Proccoli) and a study designed to understand the association between student procrastination modeling, in-app behaviors, and perceived performance with app evaluation. As the core of our study, we analyze student perceptions of Proccoli and its impact on their study tasks and time management skills. Then, we model student procrastination behaviors by Hawkes process mining, assess student in-app behaviors by specifying planning and performance-related measures and evaluate the relationship between student behaviors and the evaluation survey results. Our study shows a need for personalized self-regulation support in Proccoli, as students with different in-app studying behaviors are found to have different perceptions of the app functionalities and the association between the prompts for social accountability students received by using Proccoli and their procrastination behavior is significant. 
    more » « less
  6. Knowledge tracing (KT), or modeling student knowledge state given their past activity sequence, is one of the essential tasks in online education systems. Research has demonstrated that students benefit from both assessed (e.g., solving problems, which can be graded) and non-assessed learning activities (e.g., watching video lectures, which cannot be graded), and thus, modeling student knowledge from multiple types of activities with knowledge transfer between them is crucial. However, current approaches to multi-activity knowledge tracing cannot capture coarse-grained between-type associations and are primarily evaluated by predicting student performance on upcoming assessed activities (labeled data). Therefore, they are inadequate in incorporating signals from non-assessed activities (unlabeled data). We propose Graph-enhanced Multi-activity Knowledge Tracing (GMKT) that addresses these challenges by jointly learning a fine-grained recurrent memory-augmented student knowledge model and a coarse-grained graph neural network. In GMKT, we formulate multi-activity knowledge tracing as a semi-supervised sequence learning problem and optimize for accurate student performance and activity type at each time step. We demonstrate the effectiveness of our proposed model by experimenting on three real-world datasets. 
    more » « less
  7. null (Ed.)
    Knowledge Tracing (KT), which aims to model student knowledge level and predict their performance, is one of the most important applications of user modeling. Modern KT approaches model and maintain an up-to-date state of student knowledge over a set of course concepts according to students’ historical performance in attempting the problems. However, KT approaches were designed to model knowledge by observing relatively small problem-solving steps in Intelligent Tutoring Systems. While these approaches were applied successfully to model student knowledge by observing student solutions for simple problems, such as multiple-choice questions, they do not perform well for modeling complex problem solving in students. Most importantly, current models assume that all problem attempts are equally valuable in quantifying current student knowledge. However, for complex problems that involve many concepts at the same time, this assumption is deficient. It results in inaccurate knowledge states and unnecessary fluctuations in estimated student knowledge, especially if students guess the correct answer to a problem that they have not mastered all of its concepts or slip in answering the problem that they have already mastered all of its concepts. In this paper, we argue that not all attempts are equivalently important in discovering students’ knowledge state, and some attempts can be summarized together to better represent student performance. We propose a novel student knowledge tracing approach, Granular RAnk based TEnsor factorization (GRATE), that dynamically selects student attempts that can be aggregated while predicting students’ performance in problems and discovering the concepts presented in them. Our experiments on three real-world datasets demonstrate the improved performance of GRATE, compared to the state-of-the-art baselines, in the task of student performance prediction. Our further analysis shows that attempt aggregation eliminates the unnecessary fluctuations from students’ discovered knowledge states and helps in discovering complex latent concepts in the problems. 
    more » « less