skip to main content

Search for: All records

Creators/Authors contains: "Zhao, Siqian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Knowledge Tracing (KT), which aims to model student knowledge level and predict their performance, is one of the most important applications of user modeling. Modern KT approaches model and maintain an up-to-date state of student knowledge over a set of course concepts according to students’ historical performance in attempting the problems. However, KT approaches were designed to model knowledge by observing relatively small problem-solving steps in Intelligent Tutoring Systems. While these approaches were applied successfully to model student knowledge by observing student solutions for simple problems, such as multiple-choice questions, they do not perform well for modeling complex problem solving in students. Most importantly, current models assume that all problem attempts are equally valuable in quantifying current student knowledge. However, for complex problems that involve many concepts at the same time, this assumption is deficient. It results in inaccurate knowledge states and unnecessary fluctuations in estimated student knowledge, especially if students guess the correct answer to a problem that they have not mastered all of its concepts or slip in answering the problem that they have already mastered all of its concepts. In this paper, we argue that not all attempts are equivalently important in discovering students’ knowledge state, andmore »some attempts can be summarized together to better represent student performance. We propose a novel student knowledge tracing approach, Granular RAnk based TEnsor factorization (GRATE), that dynamically selects student attempts that can be aggregated while predicting students’ performance in problems and discovering the concepts presented in them. Our experiments on three real-world datasets demonstrate the improved performance of GRATE, compared to the state-of-the-art baselines, in the task of student performance prediction. Our further analysis shows that attempt aggregation eliminates the unnecessary fluctuations from students’ discovered knowledge states and helps in discovering complex latent concepts in the problems.« less
  2. Student procrastination and cramming for deadlines are major challenges in online learning environments, with negative educational and well-being side effects. Modeling student activities in continuous time and predicting their next study time are important problems that can help in creating personalized timely interventions to mitigate these challenges. However, previous attempts on dynamic modeling of student procrastination suffer from major issues: they are unable to predict the next activity times, cannot deal with missing activity history, are not personalized, and disregard important course properties, such as assignment deadlines, that are essential in explaining the cramming behavior. To resolve these problems, we introduce a new personalized stimuli-sensitive Hawkes process model (SSHP), by jointly modeling all student-assignment pairs and utilizing their similarities, to predict students’ next activity times even when there are no historical observations. Unlike regular point processes that assume a constant external triggering effect from the environment, we model three dynamic types of external stimuli, according to assignment availabilities, assignment deadlines, and each student’s time management habits. Our experiments on two synthetic datasets and two real-world datasets show a superior performance of future activity prediction, comparing with state-of-the-art models. Moreover, we show that our model achieves a flexible and accurate parameterizationmore »of activity intensities in students.« less
  3. The state of the art knowledge tracing approaches mostly model student knowledge using their performance in assessed learning resource types, such as quizzes, assignments, and exercises, and ignore the non-assessed learning resources. However, many student activities are non-assessed, such as watching video lectures, participating in a discussion forum, and reading a section of a textbook, all of which potentially contributing to the students' knowledge growth. In this paper, we propose the  first novel deep learning based knowledge tracing model (DMKT) that explicitly model student's knowledge transitions over both assessed and non-assessed learning activities. With DMKT we can discover the underlying latent concepts of each non-assessed and assessed learning material and better predict the student performance in future assessed learning resources. We compare our proposed method with various state of the art knowledge tracing methods on four real-world datasets and show its effectiveness in predicting student performance, representing student knowledge, and discovering the underlying domain model.
  4. Hawkes processes have been shown to be efficient in modeling bursty sequences in a variety of applications, such as finance and social network activity analysis. Traditionally, these models parameterize each process independently and assume that the history of each point process can be fully observed. Such models could however be inefficient or even prohibited in certain real-world applications, such as in the field of education, where such assumptions are violated. Motivated by the problem of detecting and predicting student procrastination in students Massive Open Online Courses (MOOCs) with missing and partially observed data, in this work, we propose a novel personalized Hawkes process model (RCHawkes-Gamma) that discovers meaningful student behavior clusters by jointly learning all partially observed processes simultaneously, without relying on auxiliary features. Our experiments on both synthetic and real-world education datasets show that RCHawkes-Gamma can effectively recover student clusters and their temporal procrastination dynamics, resulting in better predictive performance of future student activities. Our further analyses of the learned parameters and their association with student delays show that the discovered student clusters unveil meaningful representations of various procrastination behaviors in students.
  5. Procrastination, as an act of voluntarily delaying tasks, is particularly pronounced among students. Recent research has proposed several solutions to modeling student behaviors with the goal of procrastination modeling. Particularly, temporal and sequential models, such as Hawkes processes, have proven to be successful in capturing students’ behavioral dynamics as a representation of procrastination. However, these discovered dynamics are yet to be validated with psychological measures of procrastination through student self-reports and surveys. In this work, we fill this gap by discovering associations between temporal procrastination modeling in students with students’ chronic and academic procrastination levels and their goal achievement. Our analysis reveals meaningful relationships between the learning dynamics discovered by Hawkes processes with student procrastination and goal achievement based on student self-reported data. Most importantly, it shows that students who exhibit inconsistent and less regular learning activities, driven by the goal to outperform or perform not worse than other students, also reported a higher degree of procrastination.