With the increase in volume of daily online news items, it is more and more difficult for readers to identify news articles relevant to their interests. Thus, effective recommendation systems are critical for an effective user news consumption experience. Existing news recommendation methods usually rely on the news click history to model user interest. However, there are other signals about user behaviors, such as user commenting activity, which have not been used before. We propose a recommendation algorithm that predicts articles a user may be interested in, given her historical sequential commenting behavior on news articles. We show that following this sequential user behavior the news recommendation problem falls into in the class of session-based recommendation. The techniques in this class seek to model users' sequential and temporal behaviors. While we seek to follow the general directions in this space, we face unique challenges specific to news in modeling temporal dynamics, e.g., users' interests shift over time, users comment irregularly on articles, and articles are perishable items with limited lifespans. We propose a recency-regularized neural attentive framework for session-based news recommendation. The proposed method is able to capture the temporal dynamics of both users and news articles, while maintaining interpretability. We design a lag-aware attention and a recency regularization to model the time effect of news articles and comments. We conduct extensive empirical studies on 3 real-world news datasets to demonstrate the effectiveness of our method.
more »
« less
MoMENt: Marked Point Processes with Memory-Enhanced Neural Networks for User Activity Modeling
Marked temporal point process models (MTPPs) aim to model event sequences and event markers (associated features) in continuous time. These models have been applied to various application domains where capturing event dynamics in continuous time is beneficial, such as education systems, social networks, and recommender systems. However, current MTPPs suffer from two major limitations, i.e., inefficient representation of event dynamic’s influence on marker distribution and losing fine-grained representation of historical marker distributions in the modeling. Motivated by these limitations, we propose a novel model calledMarked Point Processes withMemory-EnhancedNeural Networks (MoMENt) that can capture the bidirectional interrelations between markers and event dynamics while providing fine-grained marker representations. Specifically, MoMENt is constructed of two concurrent networks: Recurrent Activity Updater (RAU) to capture model event dynamics and Memory-Enhanced Marker Updater (MEMU) to represent markers. Both RAU and MEMU components are designed to update each other at every step to model the bidirectional influence of markers and event dynamics. To obtain a fine-grained representation of maker distributions, MEMU is devised with external memories that model detailed marker-level features with latent component vectors. Our extensive experiments on six real-world user interaction datasets demonstrate that MoMENt can accurately represent users’ activity dynamics, boosting time, type, and marker predictions, as well as recommendation performance up to 76.5%, 65.6%, 77.2%, and 57.7%, respectively, compared to baseline approaches. Furthermore, our case studies show the effectiveness of MoMENt in providing meaningful and fine-grained interpretations of user-system relations over time, e.g., how user choices influence their future preferences in the recommendation domain.
more »
« less
- PAR ID:
- 10526248
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM Transactions on Knowledge Discovery from Data
- Volume:
- 18
- Issue:
- 6
- ISSN:
- 1556-4681
- Page Range / eLocation ID:
- 1 to 32
- Subject(s) / Keyword(s):
- Point process Hawkes process user activity modeling sequential model
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Although we must prioritize the processing of task-relevant information to navigate life, our ability to do so fluctuates across time. Previous work has identified fMRI functional connectivity (FC) networks that predict an individual's ability to sustain attention and vary with attentional state from 1 min to the next. However, traditional dynamic FC approaches typically lack the temporal precision to capture moment-to-moment network fluctuations. Recently, researchers have “unfurled” traditional FC matrices in “edge cofluctuation time series” which measure timepoint-by-timepoint cofluctuations between regions. Here we apply event-based and parametric fMRI analyses to edge time series to capture moment-to-moment fluctuations in networks related to attention. In two independent fMRI datasets examining young adults of both sexes in which participants performed a sustained attention task, we identified a reliable set of edges that rapidly deflects in response to rare task events. Another set of edges varies with continuous fluctuations in attention and overlaps with a previously defined set of edges associated with individual differences in sustained attention. Demonstrating that edge-based analyses are not simply redundant with traditional regions-of-interest–based approaches, up to one-third of reliably deflected edges were not predicted from univariate activity patterns alone. These results reveal the large potential in combining traditional fMRI analyses with edge time series to identify rapid reconfigurations in networks across the brain.more » « less
-
Recommending products to users with intuitive explanations helps improve the system in transparency, persuasiveness, and satisfaction. Existing interpretation techniques include post-hoc methods and interpretable modeling. The former category could quantitatively analyze input contribution to model prediction but has limited interpretation faithfulness, while the latter could explain model internal mechanisms but may not directly attribute model predictions to input features. In this study, we propose a novelDualInterpretableRecommendation model called DIRECT, which integrates ideas of the two interpretation categories to inherit their advantages and avoid limitations. Specifically, DIRECT makes use of item descriptions as explainable evidence for recommendation. First, similar to the post-hoc interpretation, DIRECT could attribute the prediction of a user preference score to textual words of the item descriptions. The attribution of each word is related to its sentiment polarity and word importance, where a word is important if it corresponds to an item aspect that the user is interested in. Second, to improve the interpretability of embedding space, we propose to extract high-level concepts from embeddings, where each concept corresponds to an item aspect. To learn discriminative concepts, we employ a concept-bottleneck layer, and maximize the coding rate reduction on word-aspect embeddings by leveraging a word-word affinity graph extracted from a pre-trained language model. In this way, DIRECT simultaneously achieves faithful attribution and usable interpretation of embedding space. We also show that DIRECT achieves linear inference time complexity regarding the length of item reviews. We conduct experiments including ablation studies on five real-world datasets. Quantitative analysis, visualizations, and case studies verify the interpretability of DIRECT. Our code is available at:https://github.com/JacksonWuxs/DIRECT.more » « less
-
Providing user-understandable explanations to justify recommendations could help users better understand the recommended items, increase the system’s ease of use, and gain users’ trust. A typical approach to realize it is natural language generation. However, previous works mostly adopt recurrent neural networks to meet the ends, leaving the potentially more effective pre-trained Transformer models under-explored. In fact, user and item IDs, as important identifiers in recommender systems, are inherently in different semantic space as words that pre-trained models were already trained on. Thus, how to effectively fuse IDs into such models becomes a critical issue. Inspired by recent advancement in prompt learning, we come up with two solutions: find alternative words to represent IDs (called discrete prompt learning) and directly input ID vectors to a pre-trained model (termed continuous prompt learning). In the latter case, ID vectors are randomly initialized but the model is trained in advance on large corpora, so they are actually in different learning stages. To bridge the gap, we further propose two training strategies: sequential tuning and recommendation as regularization. Extensive experiments show that our continuous prompt learning approach equipped with the training strategies consistently outperforms strong baselines on three datasets of explainable recommendation.more » « less
-
Fine-grained urban flow inference (FUFI), which involves inferring fine-grained flow maps from their coarse-grained counterparts, is of tremendous interest in the realm of sustainable urban traffic services. To address the FUFI, existing solutions mainly concentrate on investigating spatial dependencies, introducing external factors, reducing excessive memory costs, etc., -- while rarely considering the catastrophic forgetting (CF) problem. Motivated by recent operator learning, we present an Urban Neural Operator solution with Incremental learning (UNOI), primarily seeking to learn grained-invariant solutions for FUFI in addition to addressing CF. Specifically, we devise an urban neural operator (UNO) in UNOI that learns mappings between approximation spaces by treating the different-grained flows as continuous functions, allowing a more flexible capture of spatial correlations. Furthermore, the phenomenon of CF behind time-related flows could hinder the capture of flow dynamics. Thus, UNOI mitigates CF concerns as well as privacy issues by placing UNO blocks in two incremental settings, i.e., flow-related and task-related. Experimental results on large-scale real-world datasets demonstrate the superiority of our proposed solution against the baselines.more » « less
An official website of the United States government

