skip to main content


Search for: All records

Creators/Authors contains: "Zhao, Zhen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This research paper reports the in-progress validation of a quantitative instrument designed to assess the perceived impact of participating in a National Science Foundation (NSF)-funded Engineering Research Center (ERC). A multi-institutional consortium composed of ERC education directors, researchers, and evaluators from six NSF-funded ERCs designed easily accessible evaluation instruments and tools that specifically help measure anticipated outcomes for ERC participants for all ERCs. The total effort underway by the consortium includes creating a suite of qualitative and quantitative instruments, an evaluator toolkit, and a user-friendly online platform to host the inventory materials. This paper focuses on the quantitative instrument created to evaluate the experiences of those who engage with a center. It consists of Likert-type questions assessing the impact of the ERC on participants' self-reported: 1) understanding of the ERC, 2) research and communication skills, 3) climate of inclusion, 4) mentorship experiences, and 5) program satisfaction. The instrument also included additional demographic questions and questions to capture STEM-related future plans. The instrument was designed using multiple rounds of design iterations and pilot tests. Separate surveys used by individual ERCs were compiled and categorized to ensure all requirements from the National Science Foundation were met. The web-based survey was administered to six ERCs during the Summer of 2021, Fall of 2021, and Spring of 2022. A total of 549 responses were collected; 535 were used following data cleaning procedures. Sample sizes for each component of the survey varied because some ERCs chose to only use some parts of the new instrument. Exploratory Factor Analyses (EFA) were performed to identify latent factors and items that needed further revision. The following factors emerged from our analyses: 1) ERC general understanding; 2) development of research skills; 3) development of professional skills; 4) experience in the ERC; 5) feelings toward the ERC; 6) Beliefs about the ERC, 7) mentors performance; and 8) mentorship experience. The results provide preliminary evidence that the survey can be used across ERCs. This effort is the first that has been undertaken to develop a shared ERC instrument. The data collected was used to continue in-progress validation. The collaborative nature of this effort can provide ways for ERCs to benchmark impacts of their efforts and share effective practices across ERCs and other similarly structured STEM centers going forward. 
    more » « less
  2. National Science Foundation (NSF) funded Engineering Research Centers (ERC) are required to develop and implement education and outreach opportunities related to their core technical research topics to broaden participation in engineering and create partnerships between industry and academia. Additionally, ERCs must include an independent evaluation of their education and outreach programming to assess their performance and impacts. To date, each ERC’s evaluation team designs its instruments/tools and protocols for evaluation, resulting in idiosyncratic and redundant efforts. Nonetheless, there is much overlap among the evaluation topics, concepts, and practices, suggesting that the ERC evaluation and assessment community might benefit from having a common set of instruments and protocols. ERCs’ efforts could then be better spent developing more specific, sophisticated, and time-intensive evaluation tools to deepen and enrich the overall ERC evaluation efforts. The implementation of such a suite of instruments would further allow each ERC to compare its efforts to those across other ERCs as one data point for assessing its effectiveness and informing its improvement efforts. Members of a multi-ERC collaborative team, funded by the NSF, have been leading a project developing a suite of common instruments and protocols which contains both quantitative and qualitative tools. This paper reports on the development of a set of qualitative instruments that, to date, includes the following: (a) a set of interview/focus group protocols intended for various groups of ERC personnel, centered around five common topics/areas, and (b) rubrics for summer program participants' verbal poster/presentations and their written poster/slide deck presentation artifacts. The development process is described sequentially, beginning with a review of relevant literature and existing instruments, followed by the creation of an initial set of interview questions and rubric criteria. The initial versions of the tools were then pilot-tested with multiple ERCs. Feedback sessions with education/evaluation leaders of those piloting ERCs were then conducted, through which further revision efforts were made. 
    more » « less
  3. National Science Foundation (NSF) funded Engineering Research Centers (ERC) must complement their technical research with various education and outreach opportunities to: 1) improve and promote engineering education, both within the center and to the local community; 2) encourage and include the underrepresented populations to participate in Engineering activities; and 3) advocate communication and collaboration between industry and academia. ERCs ought to perform an adequate evaluation of their educational and outreach programs to ensure that beneficial goals are met. Each ERC has complete autonomy in conducting and reporting such evaluation. Evaluation tools used by individual ERCs are quite similar, but each ERC has designed their evaluation processes in isolation, including evaluation tools such as survey instruments, interview protocols, focus group protocols, and/or observation protocols. These isolated efforts resulted in redundant resources spent and lacking outcome comparability across ERCs. Leaders from three different ERCs led and initiated a collaborative effort to address the above issue by building a suite of common evaluation instruments that all current and future ERCs can use. This leading group consists of education directors and external evaluators from all three partners ERCs and engineering education researchers, who have worked together for two years. The project intends to address the four ERC program clusters: Broadening Participation in Engineering, Centers and Networks, Engineering Education, and Engineering Workforce Development. The instruments developed will pay attention to culture of inclusion, outreach activities, mentoring experience, and sustained interest in engineering. The project will deliver best practices in education program evaluation, which will not only support existing ERCs, but will also serve as immediate tools for brand new ERCs and similar large-scale research centers. Expanding the research beyond TEEC and sharing the developed instruments with NSF as well as other ERCs will also promote and encourage continual cross-ERC collaboration and research. Further, the joint evaluation will increase the evaluation consistency across all ERC education programs. Embedded instrumental feedback loops will lead to continual improvement to ERC education performance and support the growth of an inclusive and innovative engineering workforce. Four major deliveries are planned. First, develop a common quantitative assessment instrument, named Multi-ERC Instrument Inventory (MERCII). Second, develop a set of qualitative instruments to complement MERCII. Third, create a web-based evaluation platform for MERCII. Fourth, update the NSF ERC education program evaluation best practice manual. These deliveries together will become part of and supplemented by an ERC evaluator toolbox. This project strives to significantly impact how ERCs evaluate their educational and outreach programs. Single ERC based studies lack the sample size to truly test the validity of any evaluation instruments or measures. A common suite of instruments across ERCs would provide an opportunity for a large scale assessment study. The online platform will further provide an easy-to-use tool for all ERCs to facilitate evaluation, share data, and reporting impacts. 
    more » « less
  4. null (Ed.)
    Background . New York City (NYC) experienced an initial surge and gradual decline in the number of SARS-CoV-2-confirmed cases in 2020. A change in the pattern of laboratory test results in COVID-19 patients over this time has not been reported or correlated with patient outcome. Methods . We performed a retrospective study of routine laboratory and SARS-CoV-2 RT-PCR test results from 5,785 patients evaluated in a NYC hospital emergency department from March to June employing machine learning analysis. Results . A COVID-19 high-risk laboratory test result profile (COVID19-HRP), consisting of 21 routine blood tests, was identified to characterize the SARS-CoV-2 patients. Approximately half of the SARS-CoV-2 positive patients had the distinct COVID19-HRP that separated them from SARS-CoV-2 negative patients. SARS-CoV-2 patients with the COVID19-HRP had higher SARS-CoV-2 viral loads, determined by cycle threshold values from the RT-PCR, and poorer clinical outcome compared to other positive patients without the COVID12-HRP. Furthermore, the percentage of SARS-CoV-2 patients with the COVID19-HRP has significantly decreased from March/April to May/June. Notably, viral load in the SARS-CoV-2 patients declined, and their laboratory profile became less distinguishable from SARS-CoV-2 negative patients in the later phase. Conclusions . Our longitudinal analysis illustrates the temporal change of laboratory test result profile in SARS-CoV-2 patients and the COVID-19 evolvement in a US epicenter. This analysis could become an important tool in COVID-19 population disease severity tracking and prediction. In addition, this analysis may play an important role in prioritizing high-risk patients, assisting in patient triaging and optimizing the usage of resources. 
    more » « less
  5. null (Ed.)
    Abstract Background Accurate diagnostic strategies to identify SARS-CoV-2 positive individuals rapidly for management of patient care and protection of health care personnel are urgently needed. The predominant diagnostic test is viral RNA detection by RT-PCR from nasopharyngeal swabs specimens, however the results are not promptly obtainable in all patient care locations. Routine laboratory testing, in contrast, is readily available with a turn-around time (TAT) usually within 1-2 hours. Method We developed a machine learning model incorporating patient demographic features (age, sex, race) with 27 routine laboratory tests to predict an individual’s SARS-CoV-2 infection status. Laboratory testing results obtained within 2 days before the release of SARS-CoV-2 RT-PCR result were used to train a gradient boosting decision tree (GBDT) model from 3,356 SARS-CoV-2 RT-PCR tested patients (1,402 positive and 1,954 negative) evaluated at a metropolitan hospital. Results The model achieved an area under the receiver operating characteristic curve (AUC) of 0.854 (95% CI: 0.829-0.878). Application of this model to an independent patient dataset from a separate hospital resulted in a comparable AUC (0.838), validating the generalization of its use. Moreover, our model predicted initial SARS-CoV-2 RT-PCR positivity in 66% individuals whose RT-PCR result changed from negative to positive within 2 days. Conclusion This model employing routine laboratory test results offers opportunities for early and rapid identification of high-risk SARS-CoV-2 infected patients before their RT-PCR results are available. It may play an important role in assisting the identification of SARS-CoV-2 infected patients in areas where RT-PCR testing is not accessible due to financial or supply constraints. 
    more » « less
  6. The Engineering Research Centers (ERCs), funded by the National Science Foundation (NSF), play an important role in improving engineering education, bridging engineering academia and broad communities, and promoting a culture of diversity and inclusion. Each ERC must partner with an independent evaluation team to annually assess their performance and impact on progressing education, connecting community, and building diversified culture. This evaluation is currently performed independently (and in isolation), which leads to inconsistent evaluations and a redundant investment of ERCs’ resources into such tasks (e.g. developing evaluation instruments). These isolated efforts by ERCs to quantitatively evaluate their education programs also typically lack adequate sample size within a single center, which limits the validity and reliability of the quantitative analyses. Three ERCs, all associated with a large southwest university in the United States, worked collaboratively to overcome sample size and measure inconsistency concerns by developing a common quantitative instrument that is capable of evaluating any ERC’s education and diversity impacts. The instrument is the result of a systematic process with comparing and contrasting each ERC’s existing evaluation tools, including surveys and interview protocols. This new, streamlined tool captures participants’ overall experience as part of the ERC by measuring various constructs including skillset development, perception of diversity and inclusion, future plans after participating in the ERC, and mentorship received from the ERC. Scales and embedded items were designed broadly for possible use with both yearlong (e.g. graduate and undergraduate student, and postdoctoral scholars) and summer program (Research Experience for Undergraduates, Research Experience for Teachers, and Young Scholar Program) participants. The instrument was distributed and tested during Summer 2019 with participants in the summer programs from all three ERCs. The forthcoming paper will present the new common cross-ERC evaluation instrument, demonstrate the effort of collecting data across all three ERCs, present preliminary findings, and discuss collaborative processes and challenges. The preliminary implication for this work is the ability to directly compare educational programs across ERCs. The authors also believe that this tool can provide a fast start for new ERCs on how to evaluate their educational programs. 
    more » « less
  7. This Innovative Practice Work in Progress paper presents the collaborative efforts made by three NSF-funded Engineering Research Centers (ERCs) to synthesize common tools for educational program evaluation. The aim of the NSF ERCs is to achieve transformative changes by integrating engineering research and education with technological innovation within areas at the frontiers of science and engineering (e.g., NSF's 10 Big Ideas). Such centers across the nation study and innovate within their technical area using similar structures and implementation strategies, including the coordination of educational endeavors. Independent partners are enlisted as part of these centers to evaluate education and diversity impacts annually. Each center typically performs this task in isolation from other such centers. The effort required to create resources for such evaluation outcome can result in redundancy and an inability for psychometric analysis due to small available populations within a single center. This paper elaborates on the ongoing efforts of this collaborative research aimed at addressing these issues by creating a streamlined, customizable, and standardized set of evaluation instruments that can be applied to any ERC evaluation. 
    more » « less
  8. Abstract

    Liver fibrosis is a wound healing process marked by excessive accumulation of extracellular matrix in the liver. A poly(rC)‐binding protein 2 (PCBP2) siRNA that reverses fibrogenesis in activated hepatic stellate cells (HSCs) has been recently discovered. However, targeted delivery of siRNAs to HSCs still remains a daunting challenge. Herein, a new strategy is developed to fabricate a multicomponent nanocomplex using siRNA/peptide nucleic acid (PNA) hybrid instead of chemically conjugated siRNA, thus increasing the scalability and feasibility of the siRNA nanocomplex for animal studies. The nanocomplex is modified with an insulin growth factor 2 receptor ‐specific peptide, which specifically binds to activated HSCs. The siRNA nanocomplex demonstrates a controllable size, high serum stability, and high cellular uptake in activated HSCs in vitro and in vivo. Anti‐fibrotic activity of the siRNA nanocomplex is evaluated in rats with carbon tetrachloride‐induced liver fibrosis. Treatment with the PCBP2 siRNA nanocomplex significantly inhibits the mRNA expressions of PCBP2 and type I collagen in fibrotic liver. The histology study reveals that the siRNA nanocomplex efficiently reduces the protein level of type I collagen and reverses liver fibrosis. The data suggests that the nanocomplex efficiently delivers the siRNA to fibrotic liver and produces a potent anti‐fibrotic effect.

     
    more » « less