Abstract AimsNeural network classifiers can detect aortic stenosis (AS) using limited cardiac ultrasound images. While networks perform very well using cart-based imaging, they have never been tested or fine-tuned for use with focused cardiac ultrasound (FoCUS) acquisitions obtained on handheld ultrasound devices. Methods and resultsProspective study performed at Tufts Medical Center. All patients ≥65 years of age referred for clinically indicated transthoracic echocardigraphy (TTE) were eligible for inclusion. Parasternal long axis and parasternal short axis imaging was acquired using a commercially available handheld ultrasound device. Our cart-based AS classifier (trained on ∼10 000 images) was tested on FoCUS imaging from 160 patients. The median age was 74 (inter-quartile range 69–80) years, 50% of patients were women. Thirty patients (18.8%) had some degree of AS. The area under the received operator curve (AUROC) of the cart-based model for detecting AS was 0.87 (95% CI 0.75–0.99) on the FoCUS test set. Last-layer fine-tuning on handheld data established a classifier with AUROC of 0.94 (0.91–0.97). AUROC during temporal external validation was 0.97 (95% CI 0.89–1.0). When performance of the fine-tuned AS classifier was modelled on potential screening environments (2 and 10% AS prevalence), the positive predictive value ranged from 0.72 (0.69–0.76) to 0.88 (0.81–0.97) and negative predictive value ranged from 0.94 (0.94–0.94) to 0.99 (0.99–0.99) respectively. ConclusionOur cart-based machine-learning model for AS showed a drop in performance when tested on handheld ultrasound imaging collected by sonographers. Fine-tuning the AS classifier improved performance and demonstrates potential as a novel approach to detecting AS through automated interpretation of handheld imaging. 
                        more » 
                        « less   
                    
                            
                            Generalizability of a Machine Learning Model for Improving Utilization of Parathyroid Hormone-Related Peptide Testing across Multiple Clinical Centers
                        
                    
    
            Abstract BackgroundMeasuring parathyroid hormone-related peptide (PTHrP) helps diagnose the humoral hypercalcemia of malignancy, but is often ordered for patients with low pretest probability, resulting in poor test utilization. Manual review of results to identify inappropriate PTHrP orders is a cumbersome process. MethodsUsing a dataset of 1330 patients from a single institute, we developed a machine learning (ML) model to predict abnormal PTHrP results. We then evaluated the performance of the model on two external datasets. Different strategies (model transporting, retraining, rebuilding, and fine-tuning) were investigated to improve model generalizability. Maximum mean discrepancy (MMD) was adopted to quantify the shift of data distributions across different datasets. ResultsThe model achieved an area under the receiver operating characteristic curve (AUROC) of 0.936, and a specificity of 0.842 at 0.900 sensitivity in the development cohort. Directly transporting this model to two external datasets resulted in a deterioration of AUROC to 0.838 and 0.737, with the latter having a larger MMD corresponding to a greater data shift compared to the original dataset. Model rebuilding using site-specific data improved AUROC to 0.891 and 0.837 on the two sites, respectively. When external data is insufficient for retraining, a fine-tuning strategy also improved model utility. ConclusionsML offers promise to improve PTHrP test utilization while relieving the burden of manual review. Transporting a ready-made model to external datasets may lead to performance deterioration due to data distribution shift. Model retraining or rebuilding could improve generalizability when there are enough data, and model fine-tuning may be favorable when site-specific data is limited. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10519838
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Clinical Chemistry
- Volume:
- 69
- Issue:
- 11
- ISSN:
- 0009-9147
- Page Range / eLocation ID:
- 1260 to 1269
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract IntroductionStudies investigating the relationship between blood pressure (BP) measurements from electronic health records (EHRs) and Alzheimer's disease (AD) rely on summary statistics, like BP variability, and have only been validated at a single institution. We hypothesize that leveraging BP trajectories can accurately estimate AD risk across different populations. MethodsIn a retrospective cohort study, EHR data from Veterans Affairs (VA) patients were used to train and internally validate a machine learning model to predict AD onset within 5 years. External validation was conducted on patients from Michigan Medicine (MM). ResultsThe VA and MM cohorts included 6860 and 1201 patients, respectively. Model performance using BP trajectories was modest but comparable (area under the receiver operating characteristic curve [AUROC] = 0.64 [95% confidence interval (CI) = 0.54–0.73] for VA vs. AUROC = 0.66 [95% CI = 0.55–0.76] for MM). ConclusionApproaches that directly leverage BP trajectories from EHR data could aid in AD risk stratification across institutions.more » « less
- 
            Abstract AimsMyocardial infarction and heart failure are major cardiovascular diseases that affect millions of people in the USA with morbidity and mortality being highest among patients who develop cardiogenic shock. Early recognition of cardiogenic shock allows prompt implementation of treatment measures. Our objective is to develop a new dynamic risk score, called CShock, to improve early detection of cardiogenic shock in the cardiac intensive care unit (ICU). Methods and resultsWe developed and externally validated a deep learning-based risk stratification tool, called CShock, for patients admitted into the cardiac ICU with acute decompensated heart failure and/or myocardial infarction to predict the onset of cardiogenic shock. We prepared a cardiac ICU dataset using the Medical Information Mart for Intensive Care-III database by annotating with physician-adjudicated outcomes. This dataset which consisted of 1500 patients with 204 having cardiogenic/mixed shock was then used to train CShock. The features used to train the model for CShock included patient demographics, cardiac ICU admission diagnoses, routinely measured laboratory values and vital signs, and relevant features manually extracted from echocardiogram and left heart catheterization reports. We externally validated the risk model on the New York University (NYU) Langone Health cardiac ICU database which was also annotated with physician-adjudicated outcomes. The external validation cohort consisted of 131 patients with 25 patients experiencing cardiogenic/mixed shock. CShock achieved an area under the receiver operator characteristic curve (AUROC) of 0.821 (95% CI 0.792–0.850). CShock was externally validated in the more contemporary NYU cohort and achieved an AUROC of 0.800 (95% CI 0.717–0.884), demonstrating its generalizability in other cardiac ICUs. Having an elevated heart rate is most predictive of cardiogenic shock development based on Shapley values. The other top 10 predictors are having an admission diagnosis of myocardial infarction with ST-segment elevation, having an admission diagnosis of acute decompensated heart failure, Braden Scale, Glasgow Coma Scale, blood urea nitrogen, systolic blood pressure, serum chloride, serum sodium, and arterial blood pH. ConclusionThe novel CShock score has the potential to provide automated detection and early warning for cardiogenic shock and improve the outcomes for millions of patients who suffer from myocardial infarction and heart failure.more » « less
- 
            Abstract BackgroundThe research gap addressed in this study is the applicability of deep neural network (NN) models on wearable sensor data to recognize different activities performed by patients with Parkinson’s Disease (PwPD) and the generalizability of these models to PwPD using labeled healthy data. MethodsThe experiments were carried out utilizing three datasets containing wearable motion sensor readings on common activities of daily living. The collected readings were from two accelerometer sensors. PAMAP2 and MHEALTH are publicly available datasets collected from 10 and 9 healthy, young subjects, respectively. A private dataset of a similar nature collected from 14 PwPD patients was utilized as well. Deep NN models were implemented with varying levels of complexity to investigate the impact of data augmentation, manual axis reorientation, model complexity, and domain adaptation on activity recognition performance. ResultsA moderately complex model trained on the augmented PAMAP2 dataset and adapted to the Parkinson domain using domain adaptation achieved the best activity recognition performance with an accuracy of 73.02%, which was significantly higher than the accuracy of 63% reported in previous studies. The model’s F1 score of 49.79% significantly improved compared to the best cross-testing of 33.66% F1 score with only data augmentation and 2.88% F1 score without data augmentation or domain adaptation. ConclusionThese findings suggest that deep NN models originating on healthy data have the potential to recognize activities performed by PwPD accurately and that data augmentation and domain adaptation can improve the generalizability of models in the healthy-to-PwPD transfer scenario. The simple/moderately complex architectures tested in this study could generalize better to the PwPD domain when trained on a healthy dataset compared to the most complex architectures used. The findings of this study could contribute to the development of accurate wearable-based activity monitoring solutions for PwPD, improving clinical decision-making and patient outcomes based on patient activity levels.more » « less
- 
            Abstract BackgroundWhile most health-care providers now use electronic health records (EHRs) to document clinical care, many still treat them as digital versions of paper records. As a result, documentation often remains unstructured, with free-text entries in progress notes. This limits the potential for secondary use and analysis, as machine-learning and data analysis algorithms are more effective with structured data. ObjectiveThis study aims to use advanced artificial intelligence (AI) and natural language processing (NLP) techniques to improve diagnostic information extraction from clinical notes in a periodontal use case. By automating this process, the study seeks to reduce missing data in dental records and minimize the need for extensive manual annotation, a long-standing barrier to widespread NLP deployment in dental data extraction. Materials and MethodsThis research utilizes large language models (LLMs), specifically Generative Pretrained Transformer 4, to generate synthetic medical notes for fine-tuning a RoBERTa model. This model was trained to better interpret and process dental language, with particular attention to periodontal diagnoses. Model performance was evaluated by manually reviewing 360 clinical notes randomly selected from each of the participating site’s dataset. ResultsThe results demonstrated high accuracy of periodontal diagnosis data extraction, with the sites 1 and 2 achieving a weighted average score of 0.97-0.98. This performance held for all dimensions of periodontal diagnosis in terms of stage, grade, and extent. DiscussionSynthetic data effectively reduced manual annotation needs while preserving model quality. Generalizability across institutions suggests viability for broader adoption, though future work is needed to improve contextual understanding. ConclusionThe study highlights the potential transformative impact of AI and NLP on health-care research. Most clinical documentation (40%-80%) is free text. Scaling our method could enhance clinical data reuse.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    