skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhe Chen, Jim Zhou"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent studies have found that the position of mice or rats can be decoded from calcium imaging of brain activity offline. However, given the complex analysis pipeline, real-time position decoding remains a challenging task, especially considering strict requirements on hardware usage and energy cost for closed-loop feedback applications. In this paper, we propose two neural network based methods and corresponding hardware designs for real-time position decoding from calcium images. Our methods are based on: 1) convolutional neural network (CNN), 2) spiking neural network (SNN) converted from the CNN. We implemented quantized CNN and SNN models on FPGA. Evaluation results show that the CNN and the SNN methods achieve 56.3%/83.1% and 56.0%/82.8% Hit-1/Hit-3 accuracy for the position decoding across different rats, respectively. We also observed an accuracy-latency tradeoff of the SNN method in decoding positions under various time steps. Finally, we present our SNN implementation on the neuromorphic chip Loihi. Index Terms—calcium image, decoding, neural network. 
    more » « less