Abstract Objective . Neural decoding is an important tool in neural engineering and neural data analysis. Of various machine learning algorithms adopted for neural decoding, the recently introduced deep learning is promising to excel. Therefore, we sought to apply deep learning to decode movement trajectories from the activity of motor cortical neurons. Approach . In this paper, we assessed the performance of deep learning methods in three different decoding schemes, concurrent, time-delay, and spatiotemporal. In the concurrent decoding scheme where the input to the network is the neural activity coincidental to the movement, deep learning networks including artificial neural network (ANN) and long-short term memory (LSTM) were applied to decode movement and compared with traditional machine learning algorithms. Both ANN and LSTM were further evaluated in the time-delay decoding scheme in which temporal delays are allowed between neural signals and movements. Lastly, in the spatiotemporal decoding scheme, we trained convolutional neural network (CNN) to extract movement information from images representing the spatial arrangement of neurons, their activity, and connectomes (i.e. the relative strengths of connectivity between neurons) and combined CNN and ANN to develop a hybrid spatiotemporal network. To reveal the input features of the CNN in the hybrid network that deep learning discovered for movement decoding, we performed a sensitivity analysis and identified specific regions in the spatial domain. Main results . Deep learning networks (ANN and LSTM) outperformed traditional machine learning algorithms in the concurrent decoding scheme. The results of ANN and LSTM in the time-delay decoding scheme showed that including neural data from time points preceding movement enabled decoders to perform more robustly when the temporal relationship between the neural activity and movement dynamically changes over time. In the spatiotemporal decoding scheme, the hybrid spatiotemporal network containing the concurrent ANN decoder outperformed single-network concurrent decoders. Significance . Taken together, our study demonstrates that deep learning could become a robust and effective method for the neural decoding of behavior.
more »
« less
Efficient Kernels for Real-Time Position Decoding from In Vivo Calcium Images
Recent studies have found that the position of mice or rats can be decoded from calcium imaging of brain activity offline. However, given the complex analysis pipeline, real-time position decoding remains a challenging task, especially considering strict requirements on hardware usage and energy cost for closed-loop feedback applications. In this paper, we propose two neural network based methods and corresponding hardware designs for real-time position decoding from calcium images. Our methods are based on: 1) convolutional neural network (CNN), 2) spiking neural network (SNN) converted from the CNN. We implemented quantized CNN and SNN models on FPGA. Evaluation results show that the CNN and the SNN methods achieve 56.3%/83.1% and 56.0%/82.8% Hit-1/Hit-3 accuracy for the position decoding across different rats, respectively. We also observed an accuracy-latency tradeoff of the SNN method in decoding positions under various time steps. Finally, we present our SNN implementation on the neuromorphic chip Loihi. Index Terms—calcium image, decoding, neural network.
more »
« less
- Award ID(s):
- 1707408
- PAR ID:
- 10337240
- Date Published:
- Journal Name:
- The 2022 IEEE Symposium on Circuits and Systems (ISCAS)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Evolution has honed predatory skills in the natural world where localizing and intercepting fast-moving prey is required. The current generation of robotic systems mimics these biological systems using deep learning. High-speed processing of the camera frames using convolutional neural networks (CNN) (frame pipeline) on such constrained aerial edge-robots gets resource-limited. Adding more compute resources also eventually limits the throughput at the frame rate of the camera as frame-only traditional systems fail to capture the detailed temporal dynamics of the environment. Bio-inspired event cameras and spiking neural networks (SNN) provide an asynchronous sensor-processor pair (event pipeline) capturing the continuous temporal details of the scene for high-speed but lag in terms of accuracy. In this work, we propose a target localization system combining event-camera and SNN-based high-speed target estimation and frame-based camera and CNN-driven reliable object detection by fusing complementary spatio-temporal prowess of event and frame pipelines. One of our main contributions involves the design of an SNN filter that borrows from the neural mechanism for ego-motion cancelation in houseflies. It fuses the vestibular sensors with the vision to cancel the activity corresponding to the predator's self-motion. We also integrate the neuro-inspired multi-pipeline processing with task-optimized multi-neuronal pathway structure in primates and insects. The system is validated to outperform CNN-only processing using prey-predator drone simulations in realistic 3D virtual environments. The system is then demonstrated in a real-world multi-drone set-up with emulated event data. Subsequently, we use recorded actual sensory data from multi-camera and inertial measurement unit (IMU) assembly to show desired working while tolerating the realistic noise in vision and IMU sensors. We analyze the design space to identify optimal parameters for spiking neurons, CNN models, and for checking their effect on the performance metrics of the fused system. Finally, we map the throughput controlling SNN and fusion network on edge-compatible Zynq-7000 FPGA to show a potential 264 outputs per second even at constrained resource availability. This work may open new research directions by coupling multiple sensing and processing modalities inspired by discoveries in neuroscience to break fundamental trade-offs in frame-based computer vision 1 .more » « less
-
Building accurate and efficient deep neural network (DNN) models for intelligent sensing systems to process data locally is essential. Spiking neural networks (SNNs) have gained significant popularity in recent years because they are more biological-plausible and energy-efficient than DNNs. However, SNNs usually have lower accuracy than DNNs. In this paper, we propose to use SNNs for image sensing applications. Moreover, we introduce the DNN-SNN knowledge distillation algorithm to reduce the accuracy gap between DNNs and SNNs. Our DNNSNN knowledge distillation improves the accuracy of an SNN by transferring knowledge between a DNN and an SNN. To better transfer the knowledge, our algorithm creates two learning paths from a DNN to an SNN. One path is between the output layer and another path is between the intermediate layer. DNNs use real numbers to propagate information between neurons while SNNs use 1-bit spikes. To empower the communication between DNNs and SNNs, we utilize a decoder to decode spikes into real numbers. Also, our algorithm creates a learning path from an SNN to a DNN. This learning path better adapts the DNN to the SNN by allowing the DNN to learn the knowledge from the SNN. Our SNN models are deployed on Loihi, which is a specialized chip for SNN models. On the MNIST dataset, our SNN models trained by the DNN-SNN knowledge distillation achieve better accuracy than the SNN models on GPU trained by other training algorithms with much lower energy consumption per image.more » « less
-
Abstract Objective.Spiking neural networks (SNNs) are powerful tools that are well suited for brain machine interfaces (BMI) due to their similarity to biological neural systems and computational efficiency. They have shown comparable accuracy to state-of-the-art methods, but current training methods require large amounts of memory, and they cannot be trained on a continuous input stream without pausing periodically to perform backpropagation. An ideal BMI should be capable training continuously without interruption to minimize disruption to the user and adapt to changing neural environments.Approach.We propose a continuous SNN weight update algorithm that can be trained to perform regression learning with no need for storing past spiking events in memory. As a result, the amount of memory needed for training is constant regardless of the input duration. We evaluate the accuracy of the network on recordings of neural data taken from the premotor cortex of a primate performing reaching tasks. Additionally, we evaluate the SNN in a simulated closed loop environment and observe its ability to adapt to sudden changes in the input neural structure.Main results.The continuous learning SNN achieves the same peak correlation ( ) as existing SNN training methods when trained offline on real neural data while reducing the total memory usage by 92%. Additionally, it matches state-of-the-art accuracy in a closed loop environment, demonstrates adaptability when subjected to multiple types of neural input disruptions, and is capable of being trained online without any prior offline training.Significance.This work presents a neural decoding algorithm that can be trained rapidly in a closed loop setting. The algorithm increases the speed of acclimating a new user to the system and also can adapt to sudden changes in neural behavior with minimal disruption to the user.more » « less
-
We present a new back propagation based training algorithm for discrete-time spiking neural networks (SNN). Inspired by recent deep learning algorithms on binarized neural networks, binary activation with a straight-through gradient estimator is used to model the leaky integrate-fire spiking neuron, overcoming the difficulty in training SNNs using back propagation. Two SNN training algorithms are proposed: (1) SNN with discontinuous integration, which is suitable for rate-coded input spikes, and (2) SNN with continuous integration, which is more general and can handle input spikes with temporal information. Neuromorphic hardware designed in 28nm CMOS exploits the spike sparsity and demonstrates high classification accuracy (>98% on MNIST) and low energy (51.4–773 nJ/image).more » « less