skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Zheleva, Elena"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The presence of interference, where the outcome of an individual may depend on the treatment assignment and behavior of neighboring nodes, can lead to biased causal effect estimation. Current approaches to network experiment design focus on limiting interference through cluster-based randomization, in which clusters are identified using graph clustering, and cluster randomization dictates the node assignment to treatment and control. However, cluster-based randomization approaches perform poorly when interference propagates in cascades, whereby the response of individuals to treatment propagates to their multi-hop neighbors. When we have knowledge of the cascade seed nodes, we can leverage this interference structure to mitigate the resulting causal effect estimation bias. With this goal, we propose a cascade-based network experiment design that initiates treatment assignment from the cascade seed node and propagates the assignment to their multi-hop neighbors to limit interference during cascade growth and thereby reduce the overall causal effect estimation error. Our extensive experiments on real-world and synthetic datasets demonstrate that our proposed framework outperforms the existing state-of-the-art approaches in estimating causal effects in network data. 
    more » « less
    Free, publicly-accessible full text available May 31, 2025
  2. While exposure to diverse viewpoints may reduce polarization, it can also have a backfire effect and exacerbate polarization when the discussion is adversarial. Here, we examine the question whether intergroup interactions around important events affect polarization between majority and minority groups in social networks. We compile data on the religious identity of nearly 700,000 Indian Twitter users engaging in COVID-19-related discourse during 2020. We introduce a new measure for an individual's group conformity based on contextualized embeddings of tweet text, which helps us assess polarization between religious groups. We then use a meta-learning framework to examine heterogeneous treatment effects of intergroup interactions on an individual's group conformity in the light of communal, political, and socio-economic events. We find that for political and social events, intergroup interactions reduce polarization. This decline is weaker for individuals at the extreme who already exhibit high conformity to their group. In contrast, during communal events, intergroup interactions can increase group conformity. Finally, we decompose the differential effects across religious groups in terms of emotions and topics of discussion. The results show that the dynamics of religious polarization are sensitive to the context and have important implications for understanding the role of intergroup interactions. 
    more » « less
    Free, publicly-accessible full text available May 13, 2025
  3. Free, publicly-accessible full text available July 1, 2025
  4. Ranking algorithms in online platforms serve not only users on the demand side, but also items on the supply side. While ranking has traditionally presented items in an order that maximizes their utility to users, the uneven interactions that different items receive as a result of such a ranking can pose item fairness concerns. Moreover, interaction is affected by various forms of bias, two of which have received considerable attention: position bias and selection bias. Position bias occurs due to lower likelihood of observation for items in lower ranked positions. Selection bias occurs because interaction is not possible with items below an arbitrary cutoff position chosen by the front-end application at deployment time (i.e., showing only the top-kitems). A less studied, third form of bias, trust bias, is equally important, as it makes interaction dependent on rank even after observation, by influencing the item’s perceived relevance. To capture interaction disparity in the presence of all three biases, in this paper we introduce a flexible fairness metric. Using this metric, we develop a post-processing algorithm that optimizes fairness in ranking through greedy exploration and allows a tradeoff between fairness and utility. Our algorithm outperforms state-of-the-art fair ranking algorithms on several datasets.

     
    more » « less
    Free, publicly-accessible full text available April 6, 2025
  5. In real-world phenomena which involve mutual influence or causal effects between interconnected units, equilibrium states are typically represented with cycles in graphical models. An expressive class of graphical models, relational causal models, can represent and reason about complex dynamic systems exhibiting such cycles or feedback loops. Existing cyclic causal discovery algorithms for learning causal models from observational data assume that the data instances are independent and identically distributed which makes them unsuitable for relational causal models. At the same time, causal discovery algorithms for relational causal models assume acyclicity. In this work, we examine the necessary and sufficient conditions under which a constraint-based relational causal discovery algorithm is sound and complete for cyclic relational causal models. We introduce relational acyclification, an operation specifically designed for relational models that enables reasoning about the identifiability of cyclic relational causal models. We show that under the assumptions of relational acyclification and sigma-faithfulness, the relational causal discovery algorithm RCD is sound and complete for cyclic relational models. We present experimental results to support our claim. 
    more » « less
  6. We describe the design process and the challenges we met during a rapid multi-disciplinary pandemic project related to stay-at-home orders and social media moral frames. Unlike our typical design experience, we had to handle a steeper learning curve, emerging and continually changing datasets, as well as under-specified design requirements, persistent low visual literacy, and an extremely fast turnaround for new data ingestion, prototyping, testing and deployment. We describe the lessons learned through this experience. 
    more » « less
  7. Current approaches to A/B testing in networks focus on limiting interference, the concern that treatment effects can “spill over” from treatment nodes to control nodes and lead to biased causal effect estimation. In the presence of interference, two main types of causal effects are direct treatment effects and total treatment effects. In this paper, we propose two network experiment designs that increase the accuracy of direct and total effect estimations in network experiments through minimizing interference between treatment and control units. For direct treatment effect estimation, we present a framework that takes advantage of independent sets and assigns treatment and control only to a set of non-adjacent nodes in a graph, in order to disentangle peer effects from direct treatment effect estimation. For total treatment effect estimation, our framework combines weighted graph clustering and cluster matching approaches to jointly minimize interference and selection bias. Through a series of simulated experiments on synthetic and real-world network datasets, we show that our designs significantly increase the accuracy of direct and total treatment effect estimation in network experiments. 
    more » « less
  8. null (Ed.)
    With the ubiquity of data breaches, forgotten-about files stored in the cloud create latent privacy risks. We take a holistic approach to help users identify sensitive, unwanted files in cloud storage. We first conducted 17 qualitative interviews to characterize factors that make humans perceive a file as sensitive, useful, and worthy of either protection or deletion. Building on our findings, we conducted a primarily quantitative online study. We showed 108 long-term users of Google Drive or Dropbox a selection of files from their accounts. They labeled and explained these files' sensitivity, usefulness, and desired management (whether they wanted to keep, delete, or protect them). For each file, we collected many metadata and content features, building a training dataset of 3,525 labeled files. We then built Aletheia, which predicts a file's perceived sensitivity and usefulness, as well as its desired management. Aletheia improves over state-of-the-art baselines by 26% to 159%, predicting users' desired file-management decisions with 79% accuracy. Notably, predicting subjective perceptions of usefulness and sensitivity led to a 10% absolute accuracy improvement in predicting desired file-management decisions. Aletheia's performance validates a human-centric approach to feature selection when using inference techniques on subjective security-related tasks. It also improves upon the state of the art in minimizing the attack surface of cloud accounts. 
    more » « less