Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The 2023/24 El Niño commenced with an exceptionally large warm water volume in the equatorial western Pacific, comparable to the extreme 1997/98 and 2015/16 events, but did not develop into a super El Niño. This study highlights the critical role of contrasting Northern Pacific Meridional Mode (NPMM) conditions in this divergence. Warm NPMM conditions during the 1997/98 and 2015/16 events created a positive zonal sea surface temperature (SST) gradient in the equatorial western-central Pacific and enhanced Madden-Julian Oscillation (MJO) propagation, driving sustained westerly wind bursts (WWBs) and downwelling Kelvin waves that intensified both events. In contrast, the cold NPMM during 2023/24 induced a negative SST gradient and suppressed MJO activity, resulting in weaker WWBs and limited eastward wave activity, preventing the event from reaching super El Niño intensity. A 2,200-year CESM1 pre-industrial simulation corroborates these observational findings, underscoring the importance of NPMM interference in improving El Niño intensity predictions.more » « lessFree, publicly-accessible full text available December 1, 2026
An official website of the United States government
