skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zheng, Liting"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract PremiseClimate change poses challenges to grasslands, including those of the North American Great Plains Region, where shifts in species distributions and fire dynamics are expected. Our present analysis focuses on remaining grasslands within this largely developed and agricultural region. The differential responses of C4and C3grass species to future climate conditions, particularly in habitat suitability and flammability, are critical for understanding ecosystem changes. MethodsWe used species distribution models to predict shifts in habitat suitability for 37 grass species under future climate scenarios and assessed flammability traits in a free‐air CO2‐enrichment study, focusing on species' physiological responses to elevated CO2, warming, and drought. ResultsOur models predicted that C4species will retain higher habitat suitability, while C3species will decline. Leaf‐level flammability analysis showed that species with higher water‐use efficiency under elevated CO will have lower flammability than under non‐elevated, potentially decreasing the predicted rate of fire spread when such species dominate. In contrast, species with higher growth rates but lower water‐use efficiency may be more flammable. Species‐specific responses varied within functional types. Anticipated shifts in species distributions suggest C4species will become more dominant, potentially altering competitive dynamics and reducing C3diversity. Changes in flammability under future conditions are expected to influence fire regimes, with a predicted decrease in mean community rate of spread due to the dominance of less‐flammable C4species. ConclusionsThese findings highlight the need for adaptive fire management and conservation strategies to maintain biodiversity and ecosystem function in North American grasslands under climate change. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  2. Free, publicly-accessible full text available October 1, 2026
  3. Abstract Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e., higher species-level productivity in diverse communities compared with monocultures) remains unclear. Here, using data from 65 grassland and forest biodiversity experiments, we show that the temporal strength of diversity effects at the community scale is underpinned by temporal changes in the species that yield. These temporal trends of species-level overyielding are shaped by plant ecological strategies, which can be quantitatively delimited by functional traits. In grasslands, the temporal strengthening of biodiversity effects on community productivity was associated with increasing biomass overyielding of resource-conservative species increasing over time, and with overyielding of species characterized by fast resource acquisition either decreasing or increasing. In forests, temporal trends in species overyielding differ when considering above- versus belowground resource acquisition strategies. Overyielding in stem growth decreased for species with high light capture capacity but increased for those with high soil resource acquisition capacity. Our results imply that a diversity of species with different, and potentially complementary, ecological strategies is beneficial for maintaining community productivity over time in both grassland and forest ecosystems. 
    more » « less