skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhong, Tian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Atomic frequency comb (AFC) quantum memories are a promising technology for quantum repeater networks because they enable multi-mode, long-time, and high-fidelity storage of photons with on-demand retrieval. The optimization of the retrieval efficiency of an AFC memory is important because it strongly impacts the entanglement distribution rate in quantum networks. Despite initial theoretical analyses and recent experimental demonstrations, a rigorous proof of the universally optimal configuration for the highest AFC retrieval efficiency has not been presented. In this paper we present a simple analytical proof which shows that the optimized square tooth offers the highest retrieval efficiency among all tooth shapes, under the physical constraint of finite optical depth of an atomic ensemble. The optimality still holds when the non-zero background absorption and the finite optical linewidth of atoms are considered. We further compare square, Lorentzian and Gaussian tooth shapes to reinforce the practical advantage of the square-tooth AFC in retrieval efficiency. Our proof lays rigorous foundation for the recipe of creating optimal AFC under realistic experimental conditions. 
    more » « less
  2. Free, publicly-accessible full text available February 1, 2026
  3. Optical photons are powerful carriers of quantum information, which can be delivered in free space by satellites or in fibers on the ground over long distances. Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing. Quantum optical memories are devices designed to store quantum information in the form of stationary excitations, such as atomic coherence, and are capable of coherently mapping these excitations to flying qubits. Quantum memories can effectively store and manipulate quantum states, making them indispensable elements in future long-distance quantum networks. Over the past two decades, quantum optical memories with high fidelities, high efficiencies, long storage times, and promising multiplexing capabilities have been developed, especially at the single-photon level. In this review, we introduce the working principles of commonly used quantum memory protocols and summarize the recent advances in quantum memory demonstrations. We also offer a vision for future quantum optical memory devices that may enable entanglement distribution over long distances. 
    more » « less
  4. AbstractQuantum information processing and quantum sensing is a central topic for researchers who are part of the Materials Research Society and the Quantum Staging Group is providing leadership and guidance in this context. We convened a workshop before the 2022 MRS Spring Meeting and covered four topics to explore challenges that need to be addressed to further promote and accelerate the development of materials with applications in quantum technologies. This article captures the discussions at this workshop and refers to the pertinent literature. Graphical abstract 
    more » « less
  5. Abstract 167 Er 3+ doped solids are a promising platform for quantum technology due to erbium’s telecom C-band optical transition and its long hyperfine coherence times. We experimentally study the spin Hamiltonian and dynamics of 167 Er 3+ spins in Y 2 O 3 using electron paramagnetic resonance (EPR) spectroscopy. The anisotropic electron Zeeman, hyperfine and nuclear quadrupole matrices are fitted using data obtained by X-band (9.5 GHz) EPR spectroscopy. We perform pulsed EPR spectroscopy to measure spin relaxation time T 1 and coherence time T 2 for the 3 principal axes of an anisotropic g tensor. Long electronic spin coherence time up to 24.4 μ s is measured for lowest g transition at 4 K, exceeding previously reported values at much lower temperatures. Measurements of decoherence mechanism indicates T 2 limited by spectral diffusion and instantaneous diffusion. Long spin coherence times, along with a strong anisotropic hyperfine interaction makes 167 Er 3+ :Y 2 O 3 a rich system and an excellent candidate for spin-based quantum technologies. 
    more » « less
  6. We perform correlated optical-spin coherence spectroscopy on epitaxial rare-earth qubits in an oxide thin film. Single Er3+ions are optically addressed and used to probe coupling to two-level-systems as a simultaneous optical-spin decoherence mechanism. 
    more » « less
  7. null (Ed.)
    Abstract Rare-earth dopants are arguably one of the most studied optical centers in solids, with applications spanning from laser optoelectronics, biosensing, lighting to displays. Nevertheless, harnessing rare-earth dopants’ extraordinary coherence properties for quantum information technologies is a relatively new endeavor, and has been rapidly advancing in recent years. Leveraging the state-of-the-art photonic technologies, on-chip rare-earth quantum devices functioning as quantum memories, single photon sources and transducers have emerged, often with potential performances unrivaled by other solid-state quantum technologies. These existing quantum devices, however, nearly exclusively rely on macroscopic bulk materials as substrates, which may limit future scalability and functionalities of such quantum systems. Thus, the development of new platforms beyond single crystal bulk materials has become an interesting approach. In this review article, we summarize the latest progress towards nanoscale, low-dimensional rare-earth doped materials for enabling next generation rare-earth quantum devices. Different platforms with a variety of synthesis methods are surveyed. Their key metrics measured to date are presented and compared. Special attention is placed on the connection between the topology of each platform to its target device applications. Lastly, an outlook for near term prospects of these platforms are given, with a hope to spur broader interests in rare-earth doped materials as a promising candidate for quantum information technologies. 
    more » « less