Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We developed an integrated recurrent neural network and nonlinear regression spatio-temporal model for vector-borne disease evolution. We take into account climate data and seasonality as external factors that correlate with disease transmitting insects (e.g. flies), also spill-over infections from neighboring regions surrounding a region of interest. The climate data is encoded to the model through a quadratic embedding scheme motivated by recommendation systems. The neighboring regions’ influence is modeled by a long short-term memory neural network. The integrated model is trained by stochastic gradient descent and tested on leishmaniasis data in Sri Lanka from 2013-2018 where infection outbreaks occurred. Ourmore »Free, publicly-accessible full text available January 1, 2023
-
As the COVID-19 pandemic evolves, reliable prediction plays an important role in policymaking. The classical infectious disease model SEIR (susceptible-exposed-infectious-recovered) is a compact yet simplistic temporal model. The data-driven machine learning models such as RNN (recurrent neural networks) can suffer in case of limited time series data such as COVID-19. In this paper, we combine SEIR and RNN on a graph structure to develop a hybrid spatiotemporal model to achieve both accuracy and efficiency in training and forecasting. We introduce two features on the graph structure: node feature (local temporal infection trend) and edge feature (geographic neighbor effect). For nodemore »
-
The outbreaks of Coronavirus Disease 2019 (COVID-19) have impacted the world significantly. Modeling the trend of infection and realtime forecasting of cases can help decision making and control of the disease spread. However, data-driven methods such as recurrent neural networks (RNN) can perform poorly due to limited daily samples in time. In this work, we develop an integrated spatiotemporal model based on the epidemic differential equations (SIR) and RNN. The former after simplification and discretization is a compact model of temporal infection trend of a region while the latter models the effect of nearest neighboring regions. The latter captures latentmore »
-
The outbreaks of Coronavirus Disease 2019 (COVID-19) have impacted the world significantly. Modeling the trend of infection and real-time forecasting of cases can help decision making and control of the disease spread. However, data-driven methods such as recurrent neural networks (RNN) can perform poorly due to limited daily samples in time. In this work, we develop an integrated spatiotemporal model based on the epidemic differential equations (SIR) and RNN. The former after simplification and discretization is a compact model of temporal infection trend of a region while the latter models the effect of nearest neighboring regions. The latter captures latentmore »