skip to main content

Search for: All records

Creators/Authors contains: "Zhou, Jia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Syntheses of Rh complexes of the phosphine-amido-silane SiNP ligand are reported. The reaction of the parent (SiNP)H ligand (4) with 0.5 equiv. [(COE)RhCl] 2 (COE = cis -cyclooctene) in the presence of NaN(SiME 3 ) 2 resulted in the formation of (SiNP)Rh(COE) (5). Compound 5 was converted to a series of (SiNP)Rh(P(OR) 3 ) complexes 6–10 (R = Ph, i Pr, n Bu, Et, or Me) by treatment with the corresponding phosphite. NMR and XRD structural data, as well as the DFT computational analysis indicate that compounds 5–10 are divided into two structural Types ( A and B ), differing in the nature of the interaction of the Si–H bond of the SiNP ligand with Rh. 
    more » « less
  2. Pyridine and quinoline undergo selective C–H activation in the 2-position with Rh and Ir complexes of a boryl/bis(phosphine) PBP pincer ligand, resulting in a 2-pyridyl bridging the transition metal and the boron center. Examination of this reactivity with Rh and Ir complexes carrying different non-pincer ligands on the transition metal led to the realization of the possible isomerism derived from the 2-pyridyl fragment connecting either via B–N/C–M bonds or via B–C/N–M bonds. This M–C/M–N isomerism was systematically examined for four structural types. Each of these types has a defined set of ligands on Rh/Ir besides 2-pyridyl and PBP. A pair of M–C/M–N isomers for each type was computationally examined for Rh and for Ir, totaling 16 compounds. Several of these compounds were isolated or observed in solution by experimental methods, in addition to a few 2-quinolyl variants. The DFT predictions concerning the thermodynamic preference within each M–C/M–N isomeric match the experimental findings very well. In two cases where DFT predicts <2 kcal mol −1 difference in free energy, both isomers were experimentally observed in solution. Analysis of the structural data, of the relevant Wiberg bond indices, and of the ETS-NOCV partitioning of the interaction of the 2-pyridyl fragment with the rest of the molecule points to the strength of the M–C(pyridyl) bond as the dominant parameter determining the relative M–C/M–N isomer favorability. This M–C bond is always stronger for the analogous Ir vs. Rh compounds, but the nature of the ligand trans to it has a significant influence, as well. DFT calculations were used to evaluate the mechanism of isomerization for one of the molecule types. 
    more » « less
  3. Droplet microfluidics has become an indispensable tool for biomedical research and lab-on-a-chip applications owing to its unprecedented throughput, precision, and cost-effectiveness. Although droplets can be generated and screened in a high-throughput manner, the inability to label the inordinate amounts of droplets hinders identifying the individual droplets after generation. Herein, we demonstrate an acoustofluidic platform that enables on-demand, real-time dispensing, and deterministic coding of droplets based on their volumes. By dynamically splitting the aqueous flow using an oil jet triggered by focused traveling surface acoustic waves, a sequence of droplets with deterministic volumes can be continuously dispensed at a throughput of 100 Hz. These sequences encode barcoding information through the combination of various droplet lengths. As a proof-of-concept, we encoded droplet sequences into end-to-end packages ( e.g. , a series of 50 droplets), which consisted of an address barcode with binary volumetric combinations and a sample package with consistent volumes for hosting analytes. This acoustofluidics-based, deterministic droplet coding technique enables the tagging of droplets with high capacity and high error-tolerance, and can potentially benefit various applications involving single cell phenotyping and multiplexed screening. 
    more » « less
  4. Abstract

    In the past two decades, three highly pathogenic human coronaviruses severe acute respiratory syndrome coronavirus (SARS‐CoV), Middle East respiratory syndrome coronavirus, and, recently, SARS‐CoV‐2, have caused pandemics of severe acute respiratory diseases with alarming morbidity and mortality. Due to the lack of specific anti‐CoV therapies, the ongoing pandemic of coronavirus disease 2019 (COVID‐19) poses a great challenge to clinical management and highlights an urgent need for effective interventions. Drug repurposing is a rapid and feasible strategy to identify effective drugs for combating this deadly infection. In this review, we summarize the therapeutic CoV targets, focus on the existing small molecule drugs that have the potential to be repurposed for existing and emerging CoV infections of the future, and discuss the clinical progress of developing small molecule drugs for COVID‐19.

    more » « less
  5. Abstract

    There is an urgent need to identify novel therapies for childhood cancers. Neuroblastoma is the most common pediatric solid tumor, and accounts for ~15% of childhood cancer‐related mortality. Neuroblastomas exhibit genetic, morphological and clinical heterogeneity, which limits the efficacy of existing treatment modalities. Gaining detailed knowledge of the molecular signatures and genetic variations involved in the pathogenesis of neuroblastoma is necessary to develop safer and more effective treatments for this devastating disease. Recent studies with advanced high‐throughput “omics” techniques have revealed numerous genetic/genomic alterations and dysfunctional pathways that drive the onset, growth, progression, and resistance of neuroblastoma to therapy. A variety of molecular signatures are being evaluated to better understand the disease, with many of them being used as targets to develop new treatments for neuroblastoma patients. In this review, we have summarized the contemporary understanding of the molecular pathways and genetic aberrations, such as those in MYCN, BIRC5, PHOX2B, and LIN28B, involved in the pathogenesis of neuroblastoma, and provide a comprehensive overview of the molecular targeted therapies under preclinical and clinical investigations, particularly those targeting ALK signaling, MDM2, PI3K/Akt/mTOR and RAS‐MAPK pathways, as well as epigenetic regulators. We also give insights on the use of combination therapies involving novel agents that target various pathways. Further, we discuss the future directions that would help identify novel targets and therapeutics and improve the currently available therapies, enhancing the treatment outcomes and survival of patients with neuroblastoma.

    more » « less