Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available July 27, 2026
- 
            Free, publicly-accessible full text available July 27, 2026
- 
            Free, publicly-accessible full text available January 19, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Abstract Many protein-protein interactions behave differently in biochemically purified forms as compared to theirin vivostates. As such, determining native protein structures may elucidate structural states previously unknown for even well-characterized proteins. Here we apply the bottom-up structural proteomics method,cryoID, toward a model methanogenic archaeon. While they are keystone organisms in the global carbon cycle and active members of the human microbiome, there is a general lack of characterization of methanogen enzyme structure and function. Through thecryoIDapproach, we successfully reconstructed and identified the nativeMethanosarcina acetivoranspyridoxal 5’-phosphate (PLP) synthase (PdxS) complex directly from cryogenic electron microscopy (cryoEM) images of fractionated cellular lysate. We found that the native PdxS complex exists as a homo-dodecamer of PdxS subunits, and the previously proposed supracomplex containing both the synthase (PdxS) and glutaminase (PdxT) was not observed in cellular lysate. Our structure shows that the native PdxS monomer fashions a single 8α/8β TIM-barrel domain, surrounded by seven additional helices to mediate solvent and interface contacts. A density is present at the active site in the cryoEM map and is interpreted as ribose 5-phosphate. In addition to being the first reconstruction of the PdxS enzyme from a heterogeneous cellular sample, our results reveal a departure from previously published archaeal PdxS crystal structures, lacking the 37 amino acid insertion present in these prior cases. This study demonstrates the potential of applying thecryoIDworkflow to capture native structural states at atomic resolution for archaeal systems, for which traditional biochemical sample preparation is nontrivial.more » « less
- 
            Strigolactones (SLs) are a class of phytohormones playing diverse roles in plant growth and development, yet the limited access to SLs is largely impeding SL-based foundational investigations and applications. Here, we developed Escherichia coli – Saccharomyces cerevisiae consortia to establish a microbial biosynthetic platform for the synthesis of various SLs, including carlactone, carlactonoic acid, 5-deoxystrigol (5DS; 6.65 ± 1.71 μg/liter), 4-deoxyorobanchol (3.46 ± 0.28 μg/liter), and orobanchol (OB; 19.36 ± 5.20 μg/liter). The SL-producing platform enabled us to conduct functional identification of CYP722Cs from various plants as either OB or 5DS synthase. It also allowed us to quantitatively compare known variants of plant SL biosynthetic enzymes in the microbial system. The titer of 5DS was further enhanced through pathway engineering to 47.3 μg/liter. This work provides a unique platform for investigating SL biosynthesis and evolution and lays the foundation for developing SL microbial production process.more » « less
- 
            null (Ed.)Biomedical named entity recognition (BioNER) is a fundamental step for mining COVID-19 literature. Existing BioNER datasets cover a few common coarse-grained entity types (e.g., genes, chemicals, and diseases), which cannot be used to recognize highly domain-specific entity types (e.g., animal models of diseases) or emerging ones (e.g., coronaviruses) for COVID-19 studies. We present CORD-NER, a fine-grained named entity recognized dataset of COVID-19 literature (up until May 19, 2020). CORD-NER contains over 12 million sentences annotated via distant supervision. Also included in CORD-NER are 2,000 manually-curated sentences as a test set for performance evaluation. CORD-NER covers 75 fine-grained entity types. In addition to the common biomedical entity types, it covers new entity types specifically related to COVID-19 studies, such as coronaviruses, viral proteins, evolution, and immune responses. The dictionaries of these fine-grained entity types are collected from existing knowledge bases and human-input seed sets. We further present DISTNER, a distantly supervised NER model that relies on a massive unlabeled corpus and a collection of dictionaries to annotate the COVID-19 corpus. DISTNER provides a benchmark performance on the CORD-NER test set for future research.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available