skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhou, Qixin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 10, 2026
  2. A polymer coating autonomously reports damageviafluorescence from a force-induced retro-Diels–Alder reaction. The optical signal correlates with impact energy, enabling real-time, equipment-free damage detection, even in pigmented coatings. 
    more » « less
    Free, publicly-accessible full text available May 22, 2026
  3. Free, publicly-accessible full text available November 1, 2025
  4. Significant strides in the development of non-isocyanate polyurethane (NIPU) have been made in the coatings industry. Aligned with green chemistry principles, this study explores the use of bio-based, low volatile organic compounds and fast-curing waterborne NIPU for coating applications. The linseed oilbased cyclic carbonate was synthesized via a thiol–ene click reaction and was followed by an esterification reaction directly from linseed oil. In this structure, the cyclic carbonates are introduced as pendant functional groups to accelerate the curing. Next, a series of linseed oil-based waterborne NIPUs were synthesized and developed from the linseed oil-based cyclic carbonate, a bio-based fatty acid diamine, and an internal dispersion agent. Different formulations of the linseed oil-based NIPU coatings were designed by varying the internal dispersion agent content and urethane content, and a solvent-borne NIPU was included in the study for comparison purposes. The NIPU coatings with different formulations achieved a broad range of thermal stabilities, viscoelastic properties, and mechanical properties. The general coating properties—including hardness, solvent resistance, impact resistance, and adhesion—were evaluated to demonstrate the practical application of the waterborne NIPU in coatings. The linseed oil-based waterborne NIPU coatings exhibited performance comparable to both a solvent-borne NIPU coating and a commercial waterborne isocyanate-based polyurethane coating. 
    more » « less
  5. Multifunctional coatings with simultaneous antibacterial and anticorrosive properties are essential for marine environments, oil and gas industry, medical settings, and domestic/public appliances to preserve integrity and functionality of pipes, instruments, and surfaces. In this work, we developed a simple and effective method to prepare graphene oxide (GO)-hybridized waterborne epoxy (GOWE) coating to simultaneously improve anticorrosive and antibacterial properties . The effects of different GO filler ratios (0.05, 0.1, and 0.5, 1 wt%) on the electrochemical and antibacterial behaviors of the waterborne epoxy coating were investigated over short- and long-term periods. The electrochemical behavior was analyzed with salt solution for 64 days. The antibacterial effect of GOWE coating was evaluated with Shewanella oneidensis (MR-1), which is a microorganism that can be involved in corrosion. Our results revealed that concentrations as low as 0.1 wt% of the GO was effective performance than the waterborne epoxy coating without graphene oxide. This result is due to the high hydrophilicity of the graphene oxide fillers, which allowed great dispersion in the waterborne epoxy coating matrix. Furthermore, this study used a corrosion relevant bacterium as a model organism, that is, Shewanella oneidensis (MR-1), which is more relevant for real-word applications. This as-prepared GO-hybridized waterborne polymeric hybrid film provides new insight into the application of 2D nanomaterial polymer composites for simultaneous anticorrosive and antibacterial applications. 
    more » « less