Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The iodine to calcium ratio in carbonate (I/Ca) has been widely used to indicate ocean oxygenation level in the past. Given the volatility of iodine, I/Ca has been measured in alkaline solutions in previous studies. However, this limits the application of I/Ca with other element/Ca (El/Ca) proxies at the same time and in the same foraminifera because other El/Ca data are preferably analyzed in acidic solutions. This study assesses the reliability of I/Ca measurements in acidic solutions measured with other El/Ca as well as the effects of different sample pre‐treatments on measured foraminiferal I/Ca. Our results show that when samples are measured within hours of prepaparation, the pH of the final solution has an insignificant effect on I/Ca measurements of a carbonate reference material JCp‐1 and a multi‐element standard solution, consistent with the slow kinetics of iodine volatilization. We find, however, that low pH possibly reduces the measured I/Ca in foraminiferal tests in some samples. Our experiments also suggest a resolvable effect of reductive cleaning, yielding lower foraminiferal I/Ca compared to without reductive cleaning. The HNO3concentration used to dissolve foraminiferal shells has a negligible effect. Despite the different solution pHs and cleaning and dissolving methods, our core top planktic I/Ca data are able to differentiate well‐oxygenated from oxygen‐depleted waters in the upper ocean, and after correcting for cleaning effect, our data are generally consistent with the published studies that analyzed I/Ca without reductive cleaning and in basic solutions. This study shows that measurements of I/Ca within hours of sample dissolutions yield reliable planktic I/Ca data, while also allowing the acquisition of other El/Ca values for paleoceanographic studies.more » « less
-
Abstract The structure of mesoscale cellular organization in marine cloud‐topped boundary layers is found to be well characterized by using a novel compositing approach based on mesoscale variations in the column water vapor path (WVP). The approach is applied to ground‐based observations from the Atmospheric Radiation Measurement (ARM) Eastern North Atlantic site. Based on a set of satellite and ground‐based observational criteria, 381 hr of closed‐cell and 227 hr of open‐cell cases were selected from late 2015 to early 2018. Strong correlations are found between mesoscale‐filtered cloud properties and WVP for both closed‐cell and open‐cell regimes. In the moist atmospheric columns, the clouds are thicker with higher tops and lower bases, and stronger precipitation compared to that in the dry columns. Overall, cloud properties of open and closed cells covary similarly with mesoscale moisture perturbations, except that the correlation of liquid water path with WVP is much weaker for open cells. The relations of subcloud properties with WVP are also examined. In the moist columns, surface equivalent potential temperature and relative humidity are higher than in the dry columns. A marginally negative correlation between mesoscale‐filtered subcloud turbulence eddy dissipation rate and WVP is found for closed cells. These results are consistent with the conceptual model of closed cellular mesoscale circulations of Zhou and Bretherton (2019).more » « less
-
Abstract This study uses cloud and radiative properties collected from in situ and remote sensing instruments during two coordinated campaigns over the Southern Ocean between Tasmania and Antarctica in January–February 2018 to evaluate the simulations of clouds and precipitation in nudged‐meteorology simulations with the CAM6 and AM4 global climate models sampled at the times and locations of the observations. Fifteen SOCRATES research flights sampled cloud water content, cloud droplet number concentration, and particle size distributions in mixed‐phase boundary layer clouds at temperatures down to −25°C. The 6‐week CAPRICORN2 research cruise encountered all cloud regimes across the region. Data from vertically pointing 94 GHz radars deployed was compared with radar simulator output from both models. Satellite data were compared with simulated top‐of‐atmosphere (TOA) radiative fluxes. Both models simulate observed cloud properties fairly well within the variability of observations. Cloud base and top in both models are generally biased low. CAM6 overestimates cloud occurrence and optical thickness while cloud droplet number concentrations are biased low, leading to excessive TOA reflected shortwave radiation. In general, low clouds in CAM6 precipitate at the same frequency but are more homogeneous compared to observations. Deep clouds are better simulated but produce snow too frequently. AM4 underestimates cloud occurrence but overestimates cloud optical thickness even more than CAM6, causing excessive outgoing longwave radiation fluxes but comparable reflected shortwave radiation. AM4 cloud droplet number concentrations match observations better than CAM6. Precipitating low and deep clouds in AM4 have too little snow. Further investigation of these microphysical biases is needed for both models.more » « less
-
Rising oceanic and atmospheric oxygen levels through time have been crucial to enhanced habitability of surface Earth environments. Few redox proxies can track secular variations in dissolved oxygen concentrations ([O2]) around threshold levels for metazoan survival in the upper ocean. We present an extensive compilation of iodine to calcium ratios (I/Ca) in marine carbonates. Our record supports a major rise in atmospheric pO2 at ~400 million years ago (Ma), and reveals a step-change in the oxygenation of the upper ocean to relatively sustainable near-modern conditions at ~200 Ma. An Earth system model demonstrates that a shift in organic matter remineralization to greater depths, which may have been due to increasing size and biomineralization of eukaryotic plankton, likely drove the I/Ca signals at ~200 Mamore » « less
An official website of the United States government
