skip to main content

Title: Late inception of a resiliently oxygenated upper ocean
Rising oceanic and atmospheric oxygen levels through time have been crucial to enhanced habitability of surface Earth environments. Few redox proxies can track secular variations in dissolved oxygen concentrations ([O2]) around threshold levels for metazoan survival in the upper ocean. We present an extensive compilation of iodine to calcium ratios (I/Ca) in marine carbonates. Our record supports a major rise in atmospheric pO2 at ~400 million years ago (Ma), and reveals a step-change in the oxygenation of the upper ocean to relatively sustainable near-modern conditions at ~200 Ma. An Earth system model demonstrates that a shift in organic matter remineralization to greater depths, which may have been due to increasing size and biomineralization of eukaryotic plankton, likely drove the I/Ca signals at ~200 Ma
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Award ID(s):
1736538 1736542 1349252 1232620 1736771
Publication Date:
NSF-PAR ID:
10065856
Journal Name:
Science
Page Range or eLocation-ID:
eaar5372
ISSN:
0036-8075
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Temperature is a master parameter in the marine carbon cycle, exerting a critical control on the rate of biological transformation of a variety of solid and dissolved reactants and substrates. Although in the construction of numerical models of marine carbon cycling, temperature has been long recognised as a key parameter in the production and export of organic matter at the ocean surface, its role in the ocean interior is much less frequently accounted for. There, bacteria (primarily) transform sinking particulate organic matter (POM) into its dissolved constituents and consume dissolved oxygen (and/or other electron acceptors such as sulfate). The nutrients and carbon thereby released then become available for transport back to the surface, influencing biological productivity and atmospheric pCO2, respectively. Given the substantial changes in ocean temperature occurring in the past, as well as in light of current anthropogenic warming, appropriately accounting for the role of temperature in marine carbon cycling may be critical to correctly projecting changes in ocean deoxygenation and the strength of feedbacks on atmosphericpCO2. Here we extend and calibrate a temperature-dependent representation ofmarine carbon cycling in the cGENIE.muffin Earth system model, intended forboth past and future climate applications. In this, we combine atemperature-dependent remineralisation schememore »for sinking organic matterwith a biological export production scheme that also includes a dependenceon ambient seawater temperature. Via a parameter ensemble, we jointlycalibrate the two parameterisations by statistically contrasting model-projected fields of nutrients, oxygen, and the stable carbon isotopicsignature (δ13C) of dissolved inorganic carbon in the oceanwith modern observations. We additionally explore the role of temperature inthe creation and recycling of dissolved organic matter (DOM) and hence itsimpact on global carbon cycle dynamics. We find that for the present day, the temperature-dependent version showsa fit to the data that is as good as or better than the existing tuned non-temperature-dependent version of the cGENIE.muffin. The main impact ofaccounting for temperature-dependent remineralisation of POM is in drivinghigher rates of remineralisation in warmer waters, in turn driving a morerapid return of nutrients to the surface and thereby stimulating organicmatter production. As a result, more POM is exported below 80 m but onaverage reaches shallower depths in middle- and low-latitude warmer waterscompared to the standard model. Conversely, at higher latitudes, colderwater temperature reduces the rate of nutrient resupply to the surface andPOM reaches greater depth on average as a result of slower subsurface ratesof remineralisation. Further adding temperature-dependent DOM processeschanges this overall picture only a little, with a slight weakening ofexport production at higher latitudes. As an illustrative application of the new model configuration andcalibration, we take the example of historical warming and briefly assessthe implications for global carbon cycling of accounting for a more completeset of temperature-dependent processes in the ocean. We find that betweenthe pre-industrial era (ca. 1700) and the present (year 2010), in response to asimulated air temperature increase of 0.9 ∘C and an associatedprojected mean ocean warming of 0.12 ∘C (0.6 ∘C insurface waters and 0.02 ∘C in deep waters), a reduction inparticulate organic carbon (POC) export at 80 m of just 0.3 % occurs (or 0.7 % including a temperature-dependent DOM response). However, due to this increased recycling nearer the surface, the efficiency of the transfer of carbon away from the surface (at 80 m) to the deep ocean (at 1040 m) is reduced by 5 %. In contrast, with no assumed temperature-dependent processes impacting production or remineralisation of either POM or DOM, global POC export at 80 m falls by 2.9 % between the pre-industrial era and the present day as a consequence of ocean stratification and reduced nutrient resupply to the surface. Our analysis suggests that increased temperature-dependent nutrient recycling in the upper ocean has offset much of the stratification-induced restriction in its physical transport.« less
  2. The decline in background extinction rates of marine animals through geologic time is an established but unexplained feature of the Phanerozoic fossil record. There is also growing consensus that the ocean and atmosphere did not become oxygenated to near-modern levels until the mid-Paleozoic, coinciding with the onset of generally lower extinction rates. Physiological theory provides us with a possible causal link between these two observations—predicting that the synergistic impacts of oxygen and temperature on aerobic respiration would have made marine animals more vulnerable to ocean warming events during periods of limited surface oxygenation. Here, we evaluate the hypothesis that changes in surface oxygenation exerted a first-order control on extinction rates through the Phanerozoic using a combined Earth system and ecophysiological modeling approach. We find that although continental configuration, the efficiency of the biological carbon pump in the ocean, and initial climate state all impact the magnitude of modeled biodiversity loss across simulated warming events, atmospheric oxygen is the dominant predictor of extinction vulnerability, with metabolic habitat viability and global ecophysiotype extinction exhibiting inflection points around 40% of present atmospheric oxygen. Given this is the broad upper limit for estimates of early Paleozoic oxygen levels, our results are consistent with themore »relative frequency of high-magnitude extinction events (particularly those not included in the canonical big five mass extinctions) early in the Phanerozoic being a direct consequence of limited early Paleozoic oxygenation and temperature-dependent hypoxia responses.

    « less
  3. Keynote points • Thermal expansion from a warming ocean and land ice melt are the main causes of the accelerating global rise in the mean sea level. • Global warming is also affecting many circulation systems. The Atlantic meridional overturning circulation has already weakened and will most likely continue to do so in the future. The impacts of ocean circulation changes include a regional rise in sea levels, changes in the nutrient distribution and carbon uptake of the ocean and feedbacks with the atmosphere, such as altering the distribution of precipitation. • More than 90 per cent of the heat from global warming is stored in the global ocean. Oceans have exhibited robust warming since the 1950s from the surface to a depth of 2,000 m. The proportion of ocean heat content has more than doubled since the 1990s compared with long-term trends. Ocean warming can be seen in most of the global ocean, with a few regions exhibiting long-term cooling. • The ocean shows a marked pattern of salinity changes in multidecadal observations, with surface and subsurface patterns providing clear evidence of a water cycle amplification over the ocean. That is manifested in enhanced salinities in the near-surface, high-salinitymore »subtropical regions and freshening in the low-salinity regions such as the West Pacific Warm Pool and the poles. • An increase in atmospheric CO2 levels, and a subsequent increase in carbon in the oceans, has changed the chemistry of the oceans to include changes to pH and aragonite saturation. A more carbon-enriched marine environment, especially when coupled with other environmental stressors, has been demonstrated through field studies and experiments to have negative impacts on a wide range of organisms, in particular those that form calcium carbonate shells, and alter biodiversity and ecosystem structure. • Decades of oxygen observations allow for robust trend analyses. Long-term measurements have shown decreases in dissolved oxygen concentrations for most ocean regions and the expansion of oxygen-depleted zones. A temperature-driven solubility decrease is responsible for most near-surface oxygen loss, though oxygen decrease is not limited to the upper ocean and is present throughout the water column in many areas. • Total sea ice extent has been declining rapidly in the Arctic, but trends are insignificant in the Antarctic. In the Arctic, the summer trends are most striking in the Pacific sector of the Arctic Ocean, while, in the Antarctic, the summer trends show increases in the Weddell Sea and decreases in the West Antarctic sector of the Southern Ocean. Variations in sea ice extent result from changes in wind and ocean currents.« less
  4. The long-term climate transition from the Cretaceous greenhouse to the late Paleogene icehouse provides an opportunity to study changes in Earth system dynamics associated with large changes in global temperature and atmospheric CO2 levels. Elevated CO2 levels during the mid-Cretaceous supergreenhouse interval (~95–80 Ma) resulted in low meridional temperature gradients, and oceanic deposition during this time was punctuated by widespread episodes of severe anoxia termed oceanic anoxic events, resulting in enhanced burial of organic carbon in conjunction with transient carbon isotope and temperature excursions. The prolonged interval of mid-Cretaceous warmth and subsequent Late Cretaceous–Paleogene climate trends, as well as intervening short-lived climate excursions, are poorly documented in the southern high latitudes. International Ocean Discovery Program (IODP) Expedition 392 aims to drill five sites in the southwest Indian Ocean on the Agulhas Plateau and in the Transkei Basin, positioned at paleolatitudes of 65°–58°S during the Late Cretaceous (100–66 Ma) and in the new and evolving gateway between the South Atlantic, Southern Ocean, and southern Indian Ocean basins. Recovery of basement rocks and expanded sedimentary sequences from the Agulhas Plateau and Transkei Basin will provide a wealth of new data to (i) determine the nature and origin of the Agulhas Plateau andmore »(ii) significantly advance the understanding of how Cretaceous temperatures, ocean circulation, and sedimentation patterns evolved as CO2 levels rose and fell and the breakup of Gondwana progressed. Importantly, Expedition 392 drilling will test competing hypotheses concerning Agulhas Plateau large igneous province formation and the role of deep ocean circulation changes through southern gateways in controlling Late Cretaceous–Paleogene climate evolution.« less
  5. Abstract. Since the middle Miocene (15 Ma, million years ago), the Earth's climate has undergone a long-term cooling trend, characterised by a reduction in ocean temperatures of up to 7–8 ∘C. The causes of this cooling are primarily thought to be due to tectonic plate movements driving changes in large-scale ocean circulation patterns, and hence heat redistribution, in conjunction with a drop in atmospheric greenhouse gas forcing (and attendant ice-sheet growth and feedback). In this study, we assess the potential to constrain the evolving patterns of global ocean circulation and cooling over the last 15 Ma by assimilating a variety of marine sediment proxy data in an Earth system model. We do this by first compiling surface and benthic ocean temperature and benthic carbon-13 (δ13C) data in a series of seven time slices spaced at approximately 2.5 Myr intervals. We then pair this with a corresponding series of tectonic and climate boundary condition reconstructions in the cGENIE (“muffin” release) Earth system model, including alternative possibilities for an open vs. closed Central American Seaway (CAS) from 10 Ma onwards. In the cGENIE model, we explore uncertainty in greenhouse gas forcing and the magnitude of North Pacific to North Atlantic salinity flux adjustment required in the modelmore »to create an Atlantic Meridional Overturning Circulation (AMOC) of a specific strength, via a series of 12 (one for each tectonic reconstruction) 2D parameter ensembles. Each ensemble member is then tested against the observed global temperature and benthic δ13C patterns. We identify that a relatively high CO2 equivalent forcing of 1120 ppm is required at 15 Ma in cGENIE to reproduce proxy temperature estimates in the model, noting that this CO2 forcing is dependent on the cGENIE model's climate sensitivity and that it incorporates the effects of all greenhouse gases. We find that reproducing the observed long-term cooling trend requires a progressively declining greenhouse gas forcing in the model. In parallel to this, the strength of the AMOC increases with time despite a reduction in the salinity of the surface North Atlantic over the cooling period, attributable to falling intensity of the hydrological cycle and to lowering polar temperatures, both caused by CO2-driven global cooling. We also find that a closed CAS from 10 Ma to present shows better agreement between benthic δ13C patterns and our particular series of model configurations and data. A final outcome of our analysis is a pronounced ca. 1.5 ‰ decline occurring in atmospheric (and ca. 1 ‰ ocean surface) δ13C that could be used to inform future δ13C-based proxy reconstructions.« less