skip to main content

Search for: All records

Creators/Authors contains: "Zhou, Yang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Subgraph search problems such as maximal clique enumeration and subgraph matching generate a search-space tree which is traversed in depth-first manner by serial backtracking algorithms that are recursive. Since Jenkins et al. reported the backtracking paradigm to be sub-optimal for GPU acceleration, breadth-first traversal of the search-space tree is widely adopted by GPU algorithms. However, they produce a lot of intermediate subgraphs that exhaust the GPU device memory. Recent works revive the depth-first backtracking paradigm for GPU acceleration, where each warp is a basic processing unit with its own stack in device memory for subgraph backtracking. However, they adopt complicated methods for load balancing that incur a lot of overheads. They also use hardcoded fixed space for stacks that is determined ad-hoc and may lead to inaccuracy when the allocated space is insufficient. In this paper, we use subgraph matching as a case study to propose novel depth-first GPU solutions to address the above problems. Our approach, called T-DFS, decomposes the compu- tation into independent tasks that process search-space subtrees, which are managed by an efficient lock-free circular task queue. Tasks are distributed to different warps for parallel processing, and a novel timeout mechanism is used to eliminate straggler tasks to ensure load balancing. We also support flexible and fine- grained dynamic memory allocation for stack spaces to avoid the stack space allocation pitfalls of existing works. Extensive experi- ments on real graphs show that T-DFS significantly outperforms existing depth-first GPU solutions for the subgraph matching application. 
    more » « less
  2. Finding from a big graph those subgraphs that satisfy certain conditions (aka. subgraph search) is useful in many applications such as community detection and subgraph matching. These problems often generate a search-space tree with size exponential to the size of the input graph. GPUs with thousands of cores are a natural choice to speed up subgraph search, but existing GPU solutions either conduct BFS on the search-space tree which leads to memory overflow due to intermediate subgraph-size explosion, or they conduct DFS on the search-space tree which is memory-efficient but can be 2 orders of magnitude slower than a BFS solution. In this paper, we present G2-AIMD, a subgraph-centric framework for efficient subGraph Search on GPUs, which enjoys the efficiency of BFS on the search-space tree, while avoids intermediate subgraph-size explosion with novel system designs such as adaptive chunk-size adjustment and host-memory subgraph buffering, inspired by the additive-increase/multiplicative-decrease (AIMD) algorithm in TCP congestion control. G2-AIMD provides a convenient subgraph-centric programming interface to facilitate the implementation of subgraph search algorithms on top, so as to enjoy the above performance merits. G2-AIMD also supports multi-GPU execution where each GPU only needs to load a fraction of the input graph. To demonstrate the efficiency and scalability of G2-AIMD, two algorithms were implemented on top with additional optimization techniques, and they significantly outperform the existing GPU solutions. 
    more » « less
  3. In this demonstration paper, we describe FSM-Explorer, an interactive tool for that makes it easier for end-users to mine frequent subgraph patterns from a big graph G, and to explore the subgraph instances in G that match the patterns. FSM-Explorer not only supports the popular MNI support measure, but also the recently proposed Fraction-Score measure that is more accurate. Its backend engine is built on top of the recent T-FSM system that ensures high concurrency, bounded memory consumption, and effective load balancing. Using real-world data, we showcase how users can mine frequent subgraph patterns by parameter tuning in FSM-Explorer, and how they can conveniently examine the many matched instances in G one batch at a time to improve productivity. 
    more » « less
  4. Free, publicly-accessible full text available March 1, 2025
  5. Abstract

    Quantifying the association between components of multivariate random curves is of general interest and is a ubiquitous and basic problem that can be addressed with functional data analysis. An important application is the problem of assessing functional connectivity based on functional magnetic resonance imaging (fMRI), where one aims to determine the similarity of fMRI time courses that are recorded on anatomically separated brain regions. In the functional brain connectivity literature, the static temporal Pearson correlation has been the prevailing measure for functional connectivity. However, recent research has revealed temporally changing patterns of functional connectivity, leading to the study of dynamic functional connectivity. This motivates new similarity measures for pairs of random curves that reflect the dynamic features of functional similarity. Specifically, we introduce gradient synchronization measures in a general setting. These similarity measures are based on the concordance and discordance of the gradients between paired smooth random functions. Asymptotic normality of the proposed estimates is obtained under regularity conditions. We illustrate the proposed synchronization measures via simulations and an application to resting-state fMRI signals from the Alzheimer’s Disease Neuroimaging Initiative and they are found to improve discrimination between subjects with different disease status.

    more » « less
  6. This paper presents a data-driven framework to quantitatively analyze the disturbance amplification behavior of automated vehicles in car-following (CF). The data-driven framework can be applied to unknown CF controllers based on the concept of empirical frequency response function (FRF). Specifically, a well-known signal processing method, Welch’s method, together with a short time Fourier transformation is developed to extract the empirical transfer functions from vehicle trajectories. The method is first developed assuming a generic linear controller with time-invariant CF control features (e.g., control gains) and later extended to capture time-variant features. The proposed methods are evaluated for estimation consistencies via synthetic data-based simulations. The evaluation includes the performances of the linear approximation accuracy for a linear time-invariant controller, a nonlinear controller, and a linear time-variant controller. Results indicate that our framework can provide reasonably consistent results as theoretical ones in terms of disturbance amplification. Further it can perform better than a linear theoretical analysis of disturbance amplification, particularly when nonlinearity in CF behavior is present. The methods are applied to existing field data collected from vehicles with adaptive cruise control (ACC) on the market. Findings reveal that all tested vehicles tend to amplify disturbances, particularly in low frequency (< 0.5 Hz). Further, the results demonstrate that these ACC vehicles exhibit time-varying features in terms of disturbance amplification ratio depending on the leading vehicle trajectories. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  7. Free, publicly-accessible full text available July 1, 2024
  8. Free, publicly-accessible full text available June 12, 2024