skip to main content

Search for: All records

Creators/Authors contains: "Zhou, Yang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 9, 2024
  2. Free, publicly-accessible full text available January 1, 2024
  3. Free, publicly-accessible full text available October 1, 2023
  4. Free, publicly-accessible full text available June 1, 2023
  5. Given earth imagery with spectral features on a terrain surface, this paper studies surface segmentation based on both explanatory features and surface topology. The problem is important in many spatial and spatiotemporal applications such as flood extent mapping in hydrology. The problem is uniquely challenging for several reasons: first, the size of earth imagery on a terrain surface is often much larger than the input of popular deep convolutional neural networks; second, there exists topological structure dependency between pixel classes on the surface, and such dependency can follow an unknown and non-linear distribution; third, there are often limited training labels. Existing methods for earth imagery segmentation often divide the imagery into patches and consider the elevation as an additional feature channel. These methods do not fully incorporate the spatial topological structural constraint within and across surface patches and thus often show poor results, especially when training labels are limited. Existing methods on semi-supervised and unsupervised learning for earth imagery often focus on learning representation without explicitly incorporating surface topology. In contrast, we propose a novel framework that explicitly models the topological skeleton of a terrain surface with a contour tree from computational topology, which is guided by the physical constraintmore »(e.g., water flow direction on terrains). Our framework consists of two neural networks: a convolutional neural network (CNN) to learn spatial contextual features on a 2D image grid, and a graph neural network (GNN) to learn the statistical distribution of physics-guided spatial topological dependency on the contour tree. The two models are co-trained via variational EM. Evaluations on the real-world flood mapping datasets show that the proposed models outperform baseline methods in classification accuracy, especially when training labels are limited.« less
  6. Free, publicly-accessible full text available June 22, 2023
  7. Stedman, Kenneth M. (Ed.)
    ABSTRACT We characterized the complete genome of the cluster P mycobacteriophage Phegasus. Its 47.5-kb genome contains 81 protein-coding genes, 36 of which could be assigned a putative function. Phegasus is most closely related to two subcluster P1 bacteriophages, Mangethe and Majeke, with an average nucleotide identity of 99.63% each.
    Free, publicly-accessible full text available September 15, 2023
  8. A frequent pattern is a substructure that appears in a database with frequency (aka. support) no less than a user-specified threshold, while a closed pattern is one that has no super-pattern that has the same support. Here, a substructure can refer to different structural forms, such as itemsets, subsequences, subtrees, and subgraphs, and mining such substructures is important in many real applications such as product recommendation and feature extraction. Currently, there lacks a general programming framework that can be easily customized to mine different types of patterns, and existing parallel and distributed solutions are IO-bound rendering CPU cores underutilized. Since mining frequent and/or closed patterns are NP-hard, it is important to fully utilize the available CPU cores. This paper presents such a general-purpose framework called PrefixFPM. The framework is based on the idea of prefix projection which allows a divide-and-conquer mining paradigm. PrefixFPM exposes a unified programming interface to users who can readily customize it to mine their desired patterns. We have adapted the state-of-the-art serial algorithms for mining patterns including subsequences, subtrees, and subgraphs on top of PrefixFPM, and extensive experiments demonstrate an excellent speedup ratio of PrefixFPM with the number of CPU cores.