skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Zhou, Yuanyuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 24, 2026
  2. Free, publicly-accessible full text available August 1, 2025
  3. Mechanical failure and chemical degradation of device heterointerfaces can strongly influence the long-term stability of perovskite solar cells (PSCs) under thermal cycling and damp heat conditions. We report chirality-mediated interfaces based onR-/S-methylbenzyl-ammonium between the perovskite absorber and electron-transport layer to create an elastic yet strong heterointerface with increased mechanical reliability. This interface harnesses enantiomer-controlled entropy to enhance tolerance to thermal cycling–induced fatigue and material degradation, and a heterochiral arrangement of organic cations leads to closer packing of benzene rings, which enhances chemical stability and charge transfer. The encapsulated PSCs showed retentions of 92% of power-conversion efficiency under a thermal cycling test (−40°C to 85°C; 200 cycles over 1200 hours) and 92% under a damp heat test (85% relative humidity; 85°C; 600 hours).

     
    more » « less
    Free, publicly-accessible full text available May 23, 2025
  4. Carbon nanotubes (CNTs) are quasi-one dimensional nanostructures that display both high thermal conductivity for potential thermal management applications and intriguing low-dimensional phonon transport phenomena. In comparison to the advances made in the theoretical calculation of the lattice thermal conductivity of CNTs, thermal transport measurements of CNTs have been limited by either the poor temperature sensitivity of Raman thermometry technique or the presence of contact thermal resistance errors in sensitive two-probe resistance thermometry measurements. Here we report advances in a multi-probe measurement of the intrinsic thermal conductivity of individual multi-walled CNT samples that are transferred from the growth substrate onto the measurement device. The sample-thermometer thermal interface resistance is directly measured by this multi-probe method and used to model the temperature distribution along the contacted sample segment. The detailed temperature profile helps to eliminate the contact thermal resistance error in the obtained thermal conductivity of the suspended sample segment. A differential electro-thermal bridge measurement method is established to enhance the signal-to-noise ratio and reduce the measurement uncertainty by over 40%. The obtained thermal resistances of multiple suspended segments of the same MWCNT samples increase nearly linearly with increasing length, revealing diffusive phonon transport as a result of phonon-defect scattering in these MWCNT samples. The measured thermal conductivity increases with temperature and reaches up to 390 ± 20 W m-1 K-1 at room temperature for a 9-walled MWCNT. Theoretical analysis of the measurement results suggests submicron phonon mean free paths due to extrinsic phonon scattering by extended defects such as grain boundaries. The obtained thermal conductivity is decreased by a factor of 3 upon electron beam damage and surface contamination of the CNT sample. 
    more » « less
  5. Abstract

    While grain boundaries (GBs) in conventional inorganic semiconductors are frequently considered as detrimental for photogenerated carrier transport, their exact role remains obscure for the emerging hybrid perovskite semiconductors. A primary challenge for GB-property investigations is that experimentally they need to be performed at the top surface, which is not only insensitive to depth-dependent inhomogeneities but also could be susceptible to topographic artifacts. Accordingly, we have developed a unique approach based on tomographic atomic force microscopy, achieving a fully-3D, photogenerated carrier transport map at the nanoscale in hybrid perovskites. This reveals GBs serving as highly interconnected conducting channels for carrier transport. We have further discovered the coexistence of two GB types in hybrid perovskites, one exhibiting enhanced carrier mobilities, while the other is insipid. Our approach reveals otherwise inaccessible buried features and previously unresolved conduction pathways, crucial for optimizing hybrid perovskites for various optoelectronic applications including solar cells and photodetectors.

     
    more » « less