Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 25, 2025
-
Version incompatibility issues are prevalent when reusing or reproducing deep learning (DL) models and applications. Compared with official API documentation, which is often incomplete or out-of-date, Stack Overflow (SO) discussions possess a wealth of version knowledge that has not been explored by previous approaches. To bridge this gap, we present Decide, a web-based visualization of a knowledge graph that contains 2,376 version knowledge extracted from SO discussions. As an interactive tool, Decide allows users to easily check whether two libraries are compatible and explore compatibility knowledge of certain DL stack components with or without the version specified. A video demonstrating the usage of Decide is available at https://youtu.be/wqPxF2ZaZo0.more » « lessFree, publicly-accessible full text available July 10, 2025
-
A common workflow for single-cell RNA-sequencing (sc-RNA-seq) data analysis is to orchestrate a three-step pipeline. First, conduct a dimension reduction of the input cell profile matrix; second, cluster the cells in the latent space; and third, extract the "gene panels" that distinguish a certain cluster from others. This workflow has the primary drawback that the three steps are performed independently, neglecting the dependencies among the steps and among the marker genes or gene panels. In our system, KRATOS, we alter the three-step workflow to a two-step one, where we jointly optimize the first two steps and add the third (interpretability) step to form an integrated sc-RNA-seq analysis pipeline. We show that the more compact workflow of KRATOS extracts marker genes that can better discriminate the target cluster, distilling underlying mechanisms guiding cluster membership. In doing so, KRATOS is significantly better than the two SOTA baselines we compare against, specifically 5.62% superior to Global Counterfactual Explanation (GCE) [ICML-20], and 3.31% better than Adversarial Clustering Explanation (ACE) [ICML-21], measured by the AUROC of a kernel-SVM classifier. We opensource our code and datasets here: https://github.com/icanforce/single-cell-genomics-kratos.more » « less