skip to main content


Search for: All records

Creators/Authors contains: "Zhu, Cheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A painting, like human skin, develops cracks on the surface as it dries and ages. The painting cracks, also known as craquelure, are often considered analogous to human fingerprints; these have been regarded as a unique signature reflective of the painting’s characteristics and are important in art authentication. Intriguingly, studies in other fields, such as geology, have observed the presence of distinctive characteristics in soil desiccation cracks. These cracks exhibit self-similarity, forming patterns that suggest broader geological processes at work. In light of this connection, the primary objective of this study is to investigate whether the painting cracks also exhibit a self-similar nature. By delving into this, we seek to shed light on the underlying properties of the painting cracks. This study also aims to investigate whether the characteristic self-similar trait of the cracks can serve as an identifier in relation to the provenances of the paintings. To this end, this study adopts the methodology originally designed to characterize the phenotypic traits of 3D particle geometries in granular materials research. This study develops a 2D equivalent concept, focusing on the phenotypic traits of the individual islands enclosed by cracks within paintings. The results successfully demonstrate that the phenotypic trait of painting cracks exhibits a self-similar nature, which can reveal characteristics associated with the provenances of paintings. The findings will offer valuable insights into the scientific examination of artworks based on painting cracks. 
    more » « less
    Free, publicly-accessible full text available November 7, 2025
  2. The performance of electrocatalysts is critical for renewable energy technologies. While the electrocatalytic activity can be modulated through structural and compositional engineering following the Sabatier principle, the insufficiently explored catalyst-electrolyte interface is promising to promote microkinetic processes such as physisorption and desorption. By combining experimental designs and molecular dynamics simulations with explicit solvent in high accuracy, we demonstrated that dimethylformamide can work as an effective surface molecular pump to facilitate the entrapment of oxygen and outflux of water. Dimethylformamide disrupts the interfacial network of hydrogen bonds, leading to enhanced activity of the oxygen reduction reaction by a factor of 2 to 3. This strategy works generally for platinum-alloy catalysts, and we introduce an optimal model PtCuNi catalyst with an unprecedented specific activity of 21.8 ± 2.1 mA/cm2at 0.9 V versus the reversible hydrogen electrode, nearly double the previous record, and an ultrahigh mass activity of 10.7 ± 1.1 A/mgPt.

     
    more » « less
    Free, publicly-accessible full text available September 6, 2025
  3. Free, publicly-accessible full text available May 1, 2025
  4. This work-in-progress paper discusses the development of an educational game to provide integrated geotechnical engineering education modules that connect theoretical concepts, laboratory testing, field investigation, and engineering design. The game, Earth Trek, is developed based on the design of geothermal piles, which are an innovative and sustainable geotechnical engineering approach to combat climate change. Virtual reality is applied to visualize the field environments, laboratory conditions, and design components for structural simulation. The game uses a combination of storytelling and tasks to engage students with geotechnical concepts in an enjoyable way. With the newly developed game, geotechnical engineering instructors can provide students with exposure to laboratory testing and field environments, improving the quality of geotechnical engineering education. The use of multiphysics enriched mixed reality gaming allows for a visual representation of the connections between theoretical concepts, laboratory testing, field investigation, and engineering design. Additionally, this study discusses the challenges that geotechnical students face when dealing with worldwide concerns such as energy demand, environmental protection, infrastructure sustainability, and hazard reduction. Earth Trek allows students to apply geotechnical engineering knowledge to explore the underground space and the associated geothermal energy to tackle the engineering problems using only their smartphones. Through exploring the virtual environment and completing game tasks, students can obtain different testing tools used for geotechnical experiments, including thermal conductivity measurement and direct shear test. They are also trained to conduct parametric study to explore the influence of boundary conditions on thermal transfer efficiency of the geothermal pile. The key contribution of this work is to illustrate an educational paradigm based on mixed reality, moving towards creative engineering education in geotechnical engineering. The newly developed educational game and Earth Trek are expected to enhance geotechnical engineering education and provide students with an interdisciplinary knowledge to tackle worldwide concerns. 
    more » « less
  5. Abstract

    Imaging flow cytometry (IFC) combines flow cytometry and fluorescence microscopy to enable high-throughput, multiparametric single-cell analysis with rich spatial details. However, current IFC techniques remain limited in their ability to reveal subcellular information with a high 3D resolution, throughput, sensitivity, and instrumental simplicity. In this study, we introduce a light-field flow cytometer (LFC), an IFC system capable of high-content, single-shot, and multi-color acquisition of up to 5,750 cells per second with a near-diffraction-limited resolution of 400-600 nm in all three dimensions. The LFC system integrates optical, microfluidic, and computational strategies to facilitate the volumetric visualization of various 3D subcellular characteristics through convenient access to commonly used epi-fluorescence platforms. We demonstrate the effectiveness of LFC in assaying, analyzing, and enumerating intricate subcellular morphology, function, and heterogeneity using various phantoms and biological specimens. The advancement offered by the LFC system presents a promising methodological pathway for broad cell biological and translational discoveries, with the potential for widespread adoption in biomedical research.

     
    more » « less