skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Surface molecular pump enables ultrahigh catalyst activity
The performance of electrocatalysts is critical for renewable energy technologies. While the electrocatalytic activity can be modulated through structural and compositional engineering following the Sabatier principle, the insufficiently explored catalyst-electrolyte interface is promising to promote microkinetic processes such as physisorption and desorption. By combining experimental designs and molecular dynamics simulations with explicit solvent in high accuracy, we demonstrated that dimethylformamide can work as an effective surface molecular pump to facilitate the entrapment of oxygen and outflux of water. Dimethylformamide disrupts the interfacial network of hydrogen bonds, leading to enhanced activity of the oxygen reduction reaction by a factor of 2 to 3. This strategy works generally for platinum-alloy catalysts, and we introduce an optimal model PtCuNi catalyst with an unprecedented specific activity of 21.8 ± 2.1 mA/cm2at 0.9 V versus the reversible hydrogen electrode, nearly double the previous record, and an ultrahigh mass activity of 10.7 ± 1.1 A/mgPt more » « less
Award ID(s):
1931587
PAR ID:
10552705
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
AAAS
Date Published:
Journal Name:
Science Advances
Volume:
10
Issue:
36
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Styrene is an important commodity chemical that is highly energy and CO2intensive to produce. We report a redox oxidative dehydrogenation (redox-ODH) strategy to efficiently produce styrene. Facilitated by a multifunctional (Ca/Mn)1−xO@KFeO2core-shell redox catalyst which acts as (i) a heterogeneous catalyst, (ii) an oxygen separation agent, and (iii) a selective hydrogen combustion material, redox-ODH auto-thermally converts ethylbenzene to styrene with up to 97% single-pass conversion and >94% selectivity. This represents a 72% yield increase compared to commercial dehydrogenation on a relative basis, leading to 82% energy savings and 79% CO2emission reduction. The redox catalyst is composed of a catalytically active KFeO2shell and a (Ca/Mn)1−xO core for reversible lattice oxygen storage and donation. The lattice oxygen donation from (Ca/Mn)1−xO sacrificially stabilizes Fe3+in the shell to maintain high catalytic activity and coke resistance. From a practical standpoint, the redox catalyst exhibits excellent long-term performance under industrially compatible conditions. 
    more » « less
  2. We report an electrodeposition protocol for preparing isolated cobalt oxide single molecules (Co1Ox) and clusters (ConOy) on a carbon fiber nanoelectrode. The as-prepared deposits are able to produce well-defined steady-state voltammograms for the oxygen evolution reaction (OER) in alkaline media, where the equivalent radius (rd) is estimated by the limiting current of hydroxide oxidation in accordance with the electrocatalytic amplification model. The size of isolated clusters obtained from the femtomolar Co2+solution through an atom-by-atom technique can reach as small as 0.21 nm (rd) which is approximately the length of Co–O bond in cobalt oxide. Therefore, the deposit was close to that of a Co1Oxsingle molecule with only one cobalt ion, the minimum unit of the cobalt-based oxygen-evolving catalyst. Additionally, the size-dependent catalysis of the OER on ConOydeposits shows a faster relative rate on the smaller cluster in terms of the potential at a given current density, implying the single molecular catalyst shows a superior OER activity. 
    more » « less
  3. Abstract Metal‐Organic Frameworks (MOFs) recently emerged as a new platform for the realization of integrated devices for artificial photosynthesis. However, there remain few demonstrations of rational tuning of such devices for improved performance. Here, a fast molecular water oxidation catalyst working via water nucleophilic attack is integrated into the MOF MIL‐142, wherein Fe3O nodes absorb visible light, leading to charge separation. Materials are characterized by a range of structural and spectroscopic techniques. New, [Ru(tpy)(Qc)(H2O)]+(tpy = 2,2′:6′,2″‐terpyridine and Qc = 8‐quinolinecarboxylate)‐doped Fe MIL‐142 achieved a high photocurrent (1.6 × 10−3A·cm−2) in photo‐electrocatalytic water splitting at pH = 1. Unassisted photocatalytic H2evolution is also reported with Pt as the co‐catalyst (4.8 µmol g−1min−1). The high activity of this new system enables hydrogen gas capture from an easy‐to‐manufacture, scaled‐up prototype utilizing MOF deposited on FTO glass as a photoanode. These findings provide insights for the development of MOF‐based light‐driven water‐splitting assemblies utilizing a minimal amount of precious metals and Fe‐based photosensitizers. 
    more » « less
  4. Abstract Molecular design ultimately furnishes improvements in performance over time, and this has been the case for Rh‐ and Ir‐based molecular catalysts currently used in transfer hydrogenation (TH) reactions for fine chemical synthesis. In this report, we describe a molecular pincer ligand Al catalyst for TH, (I2P2−)Al(THF)Cl (I2P=diiminopyridine; THF=tetrahydrofuran). The mechanism for TH is initiated by two successive Al‐ligand cooperative bond activations of the O−H bonds in two molecules of isopropanol (iPrOH) to afford six‐coordinate (H2I2P)Al(OiPr)2Cl. Stoichiometric chemical reactions and kinetic experiments suggest an ordered transition state, supported by polar solvents, for concerted hydride transfer fromiPrOto substrate. Metal‐ligand cooperative hydrogen bonding in a cyclic transition state is a likely support for the concerted hydride transfer event. The available data does not support involvement of an intermediate Al‐hydride in the TH. Proof‐of‐principle reactions including the conversion of isopropanol and benzophenone to acetone and diphenylmethanol with 90 % conversion in 1 h are described. The analogous hydride compound, (I2P2−)Al(THF)H, also cleaves the O−H bond iniPrOH to afford (HI2P)Al(OiPr)H and (HI2P)Al(OiPr)2, but no activity for catalytic TH was observed. 
    more » « less
  5. Abstract We report a new catalytic system by partially covering the uniform Pt nanocrystals on a carbon support with an ultrathin film derived from polyacrylonitrile (PAN). The use of Pt nanocrystals uniform in both size and shape effectively suppresses Ostwald repining, while partially covering them with a PAN‐derived film prevents migration, aggregation, and detachment from the support. In addition, the pyridinic N atoms on the edges of the thermally‐treated PAN film can also weaken the O=O bond, accelerating the reduction of oxygen. Upon optimization, the new catalyst exhibits a mass activity of 0.51 mA ⋅ μg−1Pttoward oxygen reduction, substantially enhanced relative to the same catalyst without PAN (0.22 mA ⋅ μg−1Pt) and a commercial Pt/C (0.41 mA ⋅ μg−1Pt). The mass activity is essentially retained after 10,000 cycles of accelerated durability test between 0.6 V and 1.1 V in oxygen‐saturated HClO4. Even after aging in H3PO4at 220 °C for one week, the electrochemical surface area of the catalyst is still maintained. This catalytic system holds great promise for use in various types of fuel cells with a long lifetime. 
    more » « less