Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 1, 2024
-
Free, publicly-accessible full text available April 28, 2024
-
Free, publicly-accessible full text available November 1, 2023
-
Abstract Atmospheric rivers (ARs) are an important driver of surface mass balance over today's Greenland and Antarctic ice sheets. Using paleoclimate simulations with the Community Earth System Model, we find ARs also had a key influence on the extensive ice sheets of the Last Glacial Maximum (LGM). ARs provide up to 53% of total precipitation along the margins of the eastern Laurentide ice sheet and up to 22%–27% of precipitation along the margins of the Patagonian, western Cordilleran, and western Fennoscandian ice sheets. Despite overall cold conditions at the LGM, surface temperatures during AR events are often above freezing, resulting in more rain than snow along ice sheet margins and conditions that promote surface melt. The results suggest ARs may have had an important role in ice sheet growth and melt during previous glacial periods and may have accelerated ice sheet retreat following the LGM.
-
null (Ed.)Abstract. Equilibrium climate sensitivity (ECS) has been directly estimated using reconstructions of past climates that are different than today's. A challenge to this approach is that temperature proxies integrate over the timescales of the fast feedback processes (e.g., changes in water vapor, snow, and clouds) that are captured in ECS as well as the slower feedback processes (e.g., changes in ice sheets and ocean circulation) that are not. A way around this issue is to treat the slow feedbacks as climate forcings and independently account for their impact on global temperature. Here we conduct a suite of Last Glacial Maximum (LGM) simulations using the Community Earth System Model version 1.2 (CESM1.2) to quantify the forcingand efficacy of land ice sheets (LISs) and greenhouse gases (GHGs) in order to estimate ECS. Our forcing and efficacy quantification adopts the effective radiative forcing (ERF) and adjustment framework and provides a complete accounting for the radiative, topographic, and dynamical impacts of LIS on surface temperatures. ERF and efficacy of LGM LIS are −3.2 W m−2 and 1.1, respectively. The larger-than-unity efficacy is caused by the temperature changes over land and the Northern Hemisphere subtropical oceans which are relatively larger than those in response to a doubling of atmospheric CO2. The subtropical sea-surface temperature (SST) response is linked to LIS-induced wind changes and feedbacks in ocean–atmosphere coupling and clouds. ERF and efficacy of LGM GHG are −2.8 W m−2 and 0.9, respectively. The lower efficacy is primarily attributed to a smaller cloud feedback at colder temperatures. Our simulations further demonstrate that the direct ECS calculation using the forcing, efficacy, and temperature response in CESM1.2 overestimates the true value in the model by approximately 25 % due to the neglect of slow ocean dynamical feedback. This is supported by the greater cooling (6.8 ∘C) in a fully coupled LGM simulation than that (5.3 ∘C) in a slab ocean model simulation with ocean dynamics disabled. The majority (67 %) of the ocean dynamical feedback is attributed to dynamical changes in the Southern Ocean, where interactions between upper-ocean stratification, heat transport, and sea-ice cover are found to amplify the LGM cooling. Our study demonstrates the value of climate models in the quantification of climate forcings and the ocean dynamical feedback, which is necessary for an accurate direct ECS estimation.more » « less
-
Abstract The widening of the South Atlantic Basin led to the reorganization of regional atmospheric and oceanic circulations. However, the response of the Atlantic Intertropical Convergence Zone (ITCZ), and South American and African monsoons across paleoclimate states, especially under constant paleogeographic and climatic changes, has not been well understood. Here we report on paleoclimate simulations of the Cenomanian (∼95 Ma), early Eocene (∼55 Ma), and middle Miocene (∼14 Ma) using the Community Earth System Model version 1.2 to understand how the migration of the South American and African continents to their modern‐day positions, uplift of the Andes and East African Rift Zone, and the decline of atmospheric CO2changed the Atlantic ITCZ, and the South American and African monsoons and rainforests. Our work demonstrates that the South Atlantic widening developed the Atlantic ITCZ. The South Atlantic widening and Andean orogeny led to a stronger South American monsoon. We find the orogeny of the East African Rift Zone is the primary mechanism that strengthened the East African monsoon, whereas the West African monsoon became weaker through time as West Africa migrated toward the subtropics and CO2levels fell below 500 ppm. We utilize the Köppen‐Geiger Climate Classification as an indicator for maximum rainforest extent. We find that during the Cenomanian and early Eocene, a Pan‐African rainforest existed, while the Amazon rainforest was restricted toward the northwestern corner of South America. During the middle Miocene, the Pan‐African rainforest was reduced to near its modern‐day size, while the Amazon rainforest expanded eastward.