skip to main content

Search for: All records

Creators/Authors contains: "Zhu, Jie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2024
  2. Abstract

    Thermophotovoltaic (TPV) technology converts heat into electricity using thermal radiation. Increasing operating temperature is a highly effective approach to improving the efficiency of TPV systems. However, most reported TPV selective emitters degrade rapidly via. oxidation as operating temperatures increase. To address this issue, replacing nanostructured oxide‐metal films with oxide–oxide films is a promising way to greatly limit oxidation, even under high‐temperature conditions. This study introduces new all‐oxide photonic crystal designs for high‐temperature stable TPV systems, overcoming limitations of metal phases and offering promising material choices. The designs utilize both yttria‐stabilized zirconia (YSZ)/MgO and CeO2/MgO combinations with a multilayer structure and stable high‐quality growth. Both designsexhibit positive optical dielectric constants with tunable reflectivity, measured via optical characterization. Thermal stability testing using in situ heating X‐ray diffraction (XRD) suggests high‐temperature stability (up to 1000 °C) of both YSZ/MgO and CeO2/MgO systems. The results demonstrate a new and promising approach to improve the high‐temperature stability of TPV systems, which can be extended to a wide range of material selection and potential designs.

    more » « less
  3. Abstract

    Transitioning from pluripotency to differentiated cell fates is fundamental to both embryonic development and adult tissue homeostasis. Improving our understanding of this transition would facilitate our ability to manipulate pluripotent cells into tissues for therapeutic use. Here, we show that membrane voltage (Vm) regulates the exit from pluripotency and the onset of germ layer differentiation in the embryo, a process that affects both gastrulation and left-right patterning. By examining candidate genes of congenital heart disease and heterotaxy, we identifyKCNH6, a member of the ether-a-go-go class of potassium channels that hyperpolarizes the Vmand thus limits the activation of voltage gated calcium channels, lowering intracellular calcium. In pluripotent embryonic cells, depletion ofkcnh6leads to membrane depolarization, elevation of intracellular calcium levels, and the maintenance of a pluripotent state at the expense of differentiation into ectodermal and myogenic lineages. Using high-resolution temporal transcriptome analysis, we identify the gene regulatory networks downstream of membrane depolarization and calcium signaling and discover that inhibition of the mTOR pathway transitions the pluripotent cell to a differentiated fate. By manipulating Vmusing a suite of tools, we establish a bioelectric pathway that regulates pluripotency in vertebrates, including human embryonic stem cells.

    more » « less
  4. Abstract

    Structured Illumination Microscopy enables live imaging with sub-diffraction resolution. Unfortunately, optical aberrations can lead to loss of resolution and artifacts in Structured Illumination Microscopy rendering the technique unusable in samples thicker than a single cell. Here we report on the combination of Adaptive Optics and Structured Illumination Microscopy enabling imaging with 150 nm lateral and 570 nm axial resolution at a depth of 80 µm throughCaenorhabditis elegans. We demonstrate that Adaptive Optics improves the three-dimensional resolution, especially along the axial direction, and reduces artifacts, successfully realizing 3D-Structured Illumination Microscopy in a variety of biological samples.

    more » « less
  5. null (Ed.)