skip to main content


Search for: All records

Creators/Authors contains: "Zhu, Ling"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We construct the Schwarzschild dynamical models for 11 early-type galaxies with the SAURON and Mitchell stellar IFUs out to 2–4Re, and construct dynamical models with combined stellar and H i kinematics for a subsample of four galaxies with H i velocity fields out to 10Re obtained from the Westerbork Synthesis Radio Telescope, thus robustly obtaining the dark matter content out to large radii for these galaxies. Adopting a generalized-NFW dark matter profile, we measure an NFW-like density cusp in the dark matter inner slopes for all sample galaxies, with a mean value of 1.00 ± 0.04 (rms scatter 0.15). The mean dark matter fraction for the sample is 0.2 within 1Re, and increases to 0.4 at 2Re, and 0.6 at 5Re. The dark matter fractions within 1Re of these galaxies are systematically lower than the predictions of both the TNG-100 and EAGLE simulations. For the dark matter fractions within 2Re and 5Re, 40 and 70 per cent galaxies are 1σ consistent with either the TNG-100 or the EAGLE predictions, while the remaining 60 and 30 per cent galaxies lie below the 1σ region. Combined with 36 galaxies with dark matter fractions measured out to 5Re in the literature, about 10 per cent of these 47 galaxies lie below the 3σ region of the TNG-100 or EAGLE predictions.

     
    more » « less
  2. Free, publicly-accessible full text available December 1, 2024
  3. Wigge, Philip Anthony (Ed.)
    Plant growth and development are acutely sensitive to high ambient temperature caused in part due to climate change. However, the mechanism of high ambient temperature signaling is not well defined. Here, we show that HECATEs (HEC1 and HEC2), two helix-loop-helix transcription factors, inhibit thermomorphogenesis. While the expression of HEC1 and HEC2 is increased and HEC2 protein is stabilized at high ambient temperature, hec1hec2 double mutant showed exaggerated thermomorphogenesis. Analyses of the four PHYTOCHROME INTERACTING FACTOR (PIF1, PIF3, PIF4 and PIF5) mutants and overexpression lines showed that they all contribute to promote thermomorphogenesis. Furthermore, genetic analysis showed that pifQ is epistatic to hec1hec2 . HECs and PIFs oppositely control the expression of many genes in response to high ambient temperature. PIFs activate the expression of HEC s in response to high ambient temperature. HEC2 in turn interacts with PIF4 both in yeast and in vivo . In the absence of HECs, PIF4 binding to its own promoter as well as the target gene promoters was enhanced, indicating that HECs control PIF4 activity via heterodimerization. Overall, these data suggest that PIF4-HEC forms an autoregulatory composite negative feedback loop that controls growth genes to modulate thermomorphogenesis. 
    more » « less
  4. ABSTRACT

    We measure the enclosed Milky Way mass profile to Galactocentric distances of ∼70 and ∼50 kpc using the smooth, diffuse stellar halo samples of Bird et al. The samples are Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) and Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding and Exploration (SDSS/SEGUE) K giants (KG) and SDSS/SEGUE blue horizontal branch (BHB) stars with accurate metallicities. The 3D kinematics are available through LAMOST and SDSS/SEGUE distances and radial velocities and Gaia DR2 proper motions. Two methods are used to estimate the enclosed mass: 3D spherical Jeans equation and Evans et al. tracer mass estimator (TME). We remove substructure via the Xue et al. method based on integrals of motion. We evaluate the uncertainties on our estimates due to random sampling noise, systematic distance errors, the adopted density profile, and non-virialization and non-spherical effects of the halo. The tracer density profile remains a limiting systematic in our mass estimates, although within these limits we find reasonable agreement across the different samples and the methods applied. Out to ∼70 and ∼50 kpc, the Jeans method yields total enclosed masses of 4.3 ± 0.95 (random) ±0.6 (systematic) × 1011 M⊙ and 4.1 ± 1.2 (random) ±0.6 (systematic) × 1011 M⊙ for the KG and BHB stars, respectively. For the KG and BHB samples, we find a dark matter virial mass of $M_{200}=0.55^{+0.15}_{-0.11}$ (random) ±0.083 (systematic) × 1012 M⊙ and $M_{200}=1.00^{+0.67}_{-0.33}$ (random) ±0.15 (systematic) × 1012 M⊙, respectively.

     
    more » « less
  5. The Rockefeller Wildlife Refuge, located along the Chenier Plain in Southwest Louisiana, was the location of the sequential landfall of two major hurricanes in the 2020 hurricane season. To protect the rapidly retreating coastline along the Refuge, a system of breakwaters was constructed, which was partially completed by the 2020 hurricane season. Multi-institutional, multi-disciplinary rapid response deployments of wave gauges, piezometers, geotechnical measurements, vegetation sampling, and drone surveys were conducted before and after Hurricanes Laura and Delta along two transects in the Refuge; one protected by a breakwater system and one which was the natural, unprotected shoreline. Geomorphological changes were similar on both transects after Hurricane Laura, while after Delta there was higher inland sediment deposition on the natural shoreline. Floodwaters drained from the transect with breakwater protection more slowly than the natural shoreline, though topography profiles are similar, indicating a potential dampening or complex hydrodynamic interactions between the sediment—wetland—breakwater system. In addition, observations of a fluidized mud deposit in Rollover Bayou in the Refuge are presented and discussed in context of the maintenance of wetland elevation and stability in the sediment starved Chenier Plain. 
    more » « less