skip to main content


Search for: All records

Creators/Authors contains: "Zhu, Menglin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Structural domains and domain walls, inherent in single crystalline perovskite oxides, can significantly influence the properties of the material and therefore must be considered as a vital part of the design of the epitaxial oxide thin films. We employ 4D-STEM combined with machine learning (ML) to comprehensively characterize domain structures at both high spatial resolution and over a significant spatial extent. Using orthorhombic LaFeO3as a model system, we explore the application of unsupervised and supervised ML in domain mapping, which demonstrates robustness against experiment uncertainties. The results reveal the consequential formation of multiple domains due to the structural degeneracy when LaFeO3film is grown on cubic SrTiO3. In situ annealing of the film shows the mechanism of domain coarsening that potentially links to phase transition of LaFeO3at high temperatures. Moreover, synthesis of LaFeO3on DyScO3illustrates that a less symmetric orthorhombic substrate inhibits the formation of domain walls, thereby contributing to the mitigation of structural degeneracy. High fidelity of our approach also highlights the potential for the domain mapping of other complicated materials and thin films.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract

    (AlxGa1–x)2O3 is an ultrawide‐bandgap semiconductor with a high critical electric field for next‐generation high‐power transistors and deep‐ultraviolet photodetectors. While (010)‐(AlxGa1–x)2O3 films have been studied, the recent availability of (100), (01)‐Ga2O3 substrates have developed interest in (100), (01)‐(AlxGa1–x)2O3 films. In this work, an investigation of microscopic and spectroscopic characteristics of (100), (01), (010)–(AlxGa1–x)2O3 films is conducted. A combination of scanning transmission electron microscopy, atom probe tomography (APT), and first‐principle calculations (DFT) is performed. The findings reveal consistent in‐plane chemical homogeneity in lower aluminum content (x = 0.2) films. However, higher aluminum content (x = 0.5), showed inhomogeneity in (100), (010)–(AlxGa1–x)2O3 films attributed to their spectroscopic properties. The study expanded APT's capabilities to determine Ga─O and Al─O bond lengths by mapping their ion‐pair separations in detector space. The change in ion‐pair separations is consistent with varying orientations, irrespective of aluminum content. DFT also demonstrated a similar trend, concluding that Ga─O and Al─O bonding energy has an inverse relationship with their bond length as crystallographic orientations vary. This systematic study of growth orientation dependence of (AlxGa1–x)2O3 films’ microscopic and spectroscopic properties will guide the development of new (100) and (01)‐(AlxGa1–x)2O3 along with existing (010)–(AlxGa1–x)2O3 films.

     
    more » « less
    Free, publicly-accessible full text available March 25, 2025