skip to main content


Search for: All records

Creators/Authors contains: "Zhu, Michelle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 15, 2025
  2. Free, publicly-accessible full text available May 23, 2025
  3. Abstract

    With the increasing employment of robots in multiple areas such as smart manufacturing and intelligent transportation, both undergraduate and graduate students from computing related majors (e.g., computer science and information technology) demonstrated strong interests in learning robotics technology to broaden their career opportunities. However, instilling computing students with robotics knowledge remains a challenge since most of them have limited pre-training in engineering subjects such as electronics and mechatronics. Therefore, robotics education for computing students demands an immersive real-world learning environment by considering both theories and intensive hands-on projects. Different from traditional textbook-directed robotics learning, in this study, a situated learning-based robotics education pedagogy is proposed for computing students to equip them with robotics expertise and foster their problem-solving skills in real-world human–robot interaction contexts. To create a realistic human–robot collaboration situation, a multi-modal collaborative robot is employed in the classroom-based learning community for the whole semester. Mini-project-based homework and team projects are designed for students to practice their critical thinking and hands-on experiences. The bidirectional-evaluation approach is utilized by the instructor and students to assess the quality of the proposed pedagogy. Practice results and student evaluations suggested that the proposed situated learning-based pedagogy and robotics curriculum provided computing students to learn robotics in an effective way, which was well recognized and accepted by students even most of them were beginners. Future work of this study is also discussed.

     
    more » « less
  4. We provide an example from our integrated math and science curriculum where students explore the mathematical relationships underlying various science phenomena. We present the tasks we designed for exploring the covariation relationships that underlie the concept of gravity and discuss the generalizations students made as they interacted with those tasks. 
    more » « less
  5. We designed an instructional module that seamlessly integrates mathematics, environmental science, and technology to help students think critically about climate change. The results from a design experiment in a sixth-grade classroom show that our tasks not only enhanced students' covariational reasoning in mathematics but also helped students identify the different traits of climate change they encounter every day in the news media. 
    more » « less