skip to main content

Search for: All records

Creators/Authors contains: "Zhu, Minghui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 31, 2024
  2. Free, publicly-accessible full text available May 31, 2024
  3. Free, publicly-accessible full text available May 31, 2024
  4. This paper considers the problem where a group of mobile robots subject to unknown external disturbances aim to safely reach goal regions. We develop a distributed safe learning and planning algorithm that allows the robots to learn about the external unknown disturbances and safely navigate through the environment via their single trajectories. We use Gaussian process regression for online learning where variance is adopted to quantify the learning uncertainty. By leveraging set-valued analysis, the developed algorithm enables fast adaptation to newly learned models while avoiding collision against the learning uncertainty. Active learning is then applied to return a control policy such that the robots are able to actively explore the unknown disturbances and reach their goal regions in time. Sufficient conditions are established to guarantee the safety of the robots. A set of simulations are conducted for evaluation. 
    more » « less
  5. In this paper, we consider Byzantine-tolerant federated learning for streaming data using Gaussian process regression (GPR). In particular, a cloud and a group of agents aim to collaboratively learn a latent function where some agents are subject to Byzantine attacks. We develop a Byzantine-tolerant federated GPR algorithm, which includes three modules: agent-based local GPR, cloud-based aggregated GPR and agent-based fused GPR. We derive the upper bounds on prediction error between the mean from the cloud-based aggregated GPR and the target function provided that Byzantine agents are less than one quarter of all the agents. We also characterize the lower and upper bounds of the predictive variance. Experiments on a synthetic dataset and two real-world datasets are conducted to evaluate the proposed algorithm. 
    more » « less