Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Simon, Anne E. (Ed.)ABSTRACT Positive-strand RNA viruses build large viral replication organelles (VROs) with the help of coopted host factors. Previous works on tomato bushy stunt virus (TBSV) showed that the p33 replication protein subverts the actin cytoskeleton by sequestering the actin depolymerization factor, cofilin, to reduce actin filament disassembly and stabilize the actin filaments. Then, TBSV utilizes the stable actin filaments as “trafficking highways” to deliver proviral host factors into the protective VROs. In this work, we show that the cellular intrinsic restriction factors (CIRFs) also use the actin network to reach VROs and inhibit viral replication. Disruption of the actin filaments by expression of the Legionella RavK protease inhibited the recruitment of plant CIRFs, including the CypA-like Roc1 and Roc2 cyclophilins, and the antiviral DDX17-like RH30 DEAD box helicase into VROs. Conversely, temperature-sensitive actin and cofilin mutant yeasts with stabilized actin filaments reduced the levels of copurified CIRFs, including cyclophilins Cpr1, CypA, Cyp40-like Cpr7, cochaperones Sgt2, the Hop-like Sti1, and the RH30 helicase in viral replicase preparations. Dependence of the recruitment of both proviral and antiviral host factors into VROs on the actin network suggests that there is a race going on between TBSV and its host to exploit the actinmore »
-
Abstract Reconfigurability of photonic integrated circuits (PICs) has become increasingly important due to the growing demands for electronic–photonic systems on a chip driven by emerging applications, including neuromorphic computing, quantum information, and microwave photonics. Success in these fields usually requires highly scalable photonic switching units as essential building blocks. Current photonic switches, however, mainly rely on materials with weak, volatile thermo‐optic or electro‐optic modulation effects, resulting in large footprints and high energy consumption. As a promising alternative, chalcogenide phase‐change materials (PCMs) exhibit strong optical modulation in a static, self‐holding fashion, but the scalability of present PCM‐integrated photonic applications is still limited by the poor optical or electrical actuation approaches. Here, with phase transitions actuated by in situ silicon PIN diode heaters, scalable nonvolatile electrically reconfigurable photonic switches using PCM‐clad silicon waveguides and microring resonators are demonstrated. As a result, intrinsically compact and energy‐efficient switching units operated with low driving voltages, near‐zero additional loss, and reversible switching with high endurance are obtained in a complementary metal‐oxide‐semiconductor (CMOS)‐compatible process. This work can potentially enable very large‐scale CMOS‐integrated programmable electronic–photonic systems such as optical neural networks and general‐purpose integrated photonic processors.