skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Title: Nonvolatile Electrically Reconfigurable Integrated Photonic Switch Enabled by a Silicon PIN Diode Heater
Abstract Reconfigurability of photonic integrated circuits (PICs) has become increasingly important due to the growing demands for electronic–photonic systems on a chip driven by emerging applications, including neuromorphic computing, quantum information, and microwave photonics. Success in these fields usually requires highly scalable photonic switching units as essential building blocks. Current photonic switches, however, mainly rely on materials with weak, volatile thermo‐optic or electro‐optic modulation effects, resulting in large footprints and high energy consumption. As a promising alternative, chalcogenide phase‐change materials (PCMs) exhibit strong optical modulation in a static, self‐holding fashion, but the scalability of present PCM‐integrated photonic applications is still limited by the poor optical or electrical actuation approaches. Here, with phase transitions actuated by in situ silicon PIN diode heaters, scalable nonvolatile electrically reconfigurable photonic switches using PCM‐clad silicon waveguides and microring resonators are demonstrated. As a result, intrinsically compact and energy‐efficient switching units operated with low driving voltages, near‐zero additional loss, and reversible switching with high endurance are obtained in a complementary metal‐oxide‐semiconductor (CMOS)‐compatible process. This work can potentially enable very large‐scale CMOS‐integrated programmable electronic–photonic systems such as optical neural networks and general‐purpose integrated photonic processors.  more » « less
Award ID(s):
1640986
PAR ID:
10455380
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
32
Issue:
31
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Programmable photonic integrated circuits are expected to play an increasingly important role in enabling high-bandwidth optical interconnects and large-scale in-memory computing as needed to support the rise of artificial intelligence and machine learning technology. To that end, chalcogenide-based non-volatile phase-change materials (PCMs) present a promising solution due to zero static power. However, high switching voltage and a small number of operating levels present serious roadblocks to the widespread adoption of PCM-programmable units. Here, we demonstrate an electrically programmable wide bandgap Sb2S3-clad silicon ring resonator using a silicon microheater at a complementary-metal–oxide–semiconductor compatible voltage of <3 V. Our device shows a low switching energy of 35.33 nJ (0.48 mJ) for amorphization (crystallization) and reversible phase transitions with high endurance (>2000 switching events) near 1550 nm. Combining a volatile thermo-optic effect with non-volatile PCMs, we demonstrate 7-bit (127 levels) operation with excellent repeatability and reduced power consumption. Our demonstration of low-voltage and low-energy operation, combined with the hybrid volatile–nonvolatile approach, marks a significant step toward integrating PCM-based programmable units in large-scale optical interconnects. 
    more » « less
  2. Abstract Microwave photonics uses light to carry and process microwave signals over a photonic link. However, light can instead be used as a stimulus to microwave devices that directly control microwave signals. Such optically controlled amplitude and phase-shift switches are investigated for use in reconfigurable microwave systems, but they suffer from large footprint, high optical power level required for switching, lack of scalability and complex integration requirements, restricting their implementation in practical microwave systems. Here, we report Monolithic Optically Reconfigurable Integrated Microwave Switches (MORIMSs) built on a CMOS compatible silicon photonic chip that addresses all of the stringent requirements. Our scalable micrometer-scale switches provide higher switching efficiency and require optical power orders of magnitude lower than the state-of-the-art. Also, it opens a new research direction on silicon photonic platforms integrating microwave circuitry. This work has important implications in reconfigurable microwave and millimeter wave devices for future communication networks. 
    more » « less
  3. The recent development of 8-in Gallium Nitride on Silicon (GaN-on-Si) wafers has facilitated cost effective, large-scale manufacturability of GaN-based electronics. Leveraging its wide band gap, capability to support a two dimensional electron gas (2DEG) layer, and strong built-in polarization effects, GaN-based electronic devices have become a viable cost-effective successor to silicon-based devices for high-performance applications where the large bandgap and high breakdown field are required. The advantageous properties of GaN-on-Si material, however, have yet to be utilized for photonic integrated circuit applications. Therefore, the exploration of GaN for efficient on-chip optical modulation and switching applications is examined. In order to effectively characterize GaN’s capabilities for optical modulation and switching, GaN-based Mach-Zehnder modulators are designed and fabricated. Through simulating the propagating optical modes supported in a GaN-based Mach-Zehnder structure, the geometry of the device is designed to optimize optical modal overlap with the 2DEG layer while maintaining single-mode performance. Through electrical and optical characterization, the effective electro-optic coefficient and Vπ length are measured. These measurements provide a method of benchmarking GaN-based photonic devices for their optical modulation and switching efficiency. 
    more » « less
  4. The recent development of 8-in Gallium Nitride on Silicon (GaN-on-Si) wafers has facilitated cost effective, large-scale manufacturability of GaN-based electronics. Leveraging its wide band gap, capability to support a two dimensional electron gas (2DEG) layer, and strong built-in polarization effects, GaN-based electronic devices have become a viable cost-effective successor to silicon-based devices for high-performance applications where the large bandgap and high breakdown field are required. The advantageous properties of GaN-on-Si material, however, have yet to be utilized for photonic integrated circuit applications. Therefore, the exploration of GaN for efficient on-chip optical modulation and switching applications is examined. In order to effectively characterize GaN’s capabilities for optical modulation and switching, GaN based Mach-Zehnder modulators are designed and fabricated. Through simulating the propagating optical modes supported in a GaN-based Mach-Zehnder structure, the geometry of the device is designed to optimize optical modal overlap with the 2DEG layer while maintaining single-mode performance. Through electrical and optical characterization, the effective electro-optic coefficient and Vπ length are measured. These measurements provide a method of benchmarking GaN-based photonic devices for their optical modulation and switching efficiency. 
    more » « less
  5. Abstract Scalable programmable photonic integrated circuits (PICs) can potentially transform the current state of classical and quantum optical information processing. However, traditional means of programming, including thermo-optic, free carrier dispersion, and Pockels effect result in either large device footprints or high static energy consumptions, significantly limiting their scalability. While chalcogenide-based non-volatile phase-change materials (PCMs) could mitigate these problems thanks to their strong index modulation and zero static power consumption, they often suffer from large absorptive loss, low cyclability, and lack of multilevel operation. Here, we report a wide-bandgap PCM antimony sulfide (Sb2S3)-clad silicon photonic platform simultaneously achieving low loss (<1.0 dB), high extinction ratio (>10 dB), high cyclability (>1600 switching events), and 5-bit operation. These Sb2S3-based devices are programmed via on-chip silicon PIN diode heaters within sub-ms timescale, with a programming energy density of$$\sim 10\,{fJ}/n{m}^{3}$$ ~ 10 f J / n m 3 . Remarkably, Sb2S3is programmed into fine intermediate states by applying multiple identical pulses, providing controllable multilevel operations. Through dynamic pulse control, we achieve 5-bit (32 levels) operations, rendering 0.50 ± 0.16 dB per step. Using this multilevel behavior, we further trim random phase error in a balanced Mach-Zehnder interferometer. 
    more » « less