skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhu, Xingquan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT With renewable energy being aggressively integrated into the grid, energy supplies are becoming vulnerable to weather and the environment, and are often incapable of meeting population demands at a large scale if not accurately predicted for energy planning. Understanding consumers' power demands ahead of time and the influences of weather on consumption and generation can help producers generate effective power management plans to support the target demand. In addition to the high correlation with the environment, consumers' behaviors also cause non‐stationary characteristics of energy data, which is the main challenge for energy prediction. In this survey, we perform a review of the literature on prediction methods in the energy field. So far, most of the available research encompasses one type of generation or consumption. There is no research approaching prediction in the energy sector as a whole and its correlated features. We propose to address the energy prediction challenges from both consumption and generation sides, encompassing techniques from statistical to machine learning techniques. We also summarize the work related to energy prediction, electricity measurements, challenges related to energy consumption and generation, energy forecasting methods, and real‐world energy forecasting resources, such as datasets and software solutions for energy prediction. This article is categorized under:Application Areas > Industry Specific ApplicationsTechnologies > PredictionTechnologies > Machine Learning 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. Graph Neural Networks (GNNs) have shown superb performance in handling networked data, mainly attributed to their message passing and convolution process across neighbors. For most literature, the performance of GNNs is mainly reported based on noise-free data environments. No study has systematically evaluated GNNs’ performance under noise. In this article, we carry out an empirical study and theoretical analysis of four types of GNNs, including Graph Convolutional Networks (GCNs), Graph Attention Networks (GATs), Graph Contrastive Networks (GCL), and graph UniFilter under three types of noise, including attribute noise, structure noise, and label noise. Our study shows that GNNs behave tremendously differently in response to different types of noise. Overall, GAT is the most noise vulnerable and sensitive, whereas GCL is the most noise resilient. We further carry out theoretical analysis to explain the reason causing GAT to be sensitive to noise, and propose a solution to enhance its noise resilience. Our study brings in-depth firsthand knowledge of GNNs under noise for researchers and practitioners to better utilize GNNs in real-world applications. 
    more » « less
    Free, publicly-accessible full text available July 31, 2026
  3. Free, publicly-accessible full text available July 17, 2026
  4. Free, publicly-accessible full text available August 16, 2026
  5. Free, publicly-accessible full text available July 15, 2026
  6. Free, publicly-accessible full text available July 13, 2026
  7. Group Fairness-aware Continual Learning (GFCL) aims to eradicate discriminatory predictions against certain demographic groups in a sequence of diverse learning tasks.This paper explores an even more challenging GFCL problem – how to sustain a fair classifier across a sequence of tasks with covariate shifts and unlabeled data. We propose the MacFRL solution, with its key idea to optimizethe sequence of learning tasks. We hypothesize that high-confident learning can be enabled in the optimized task sequence, where the classifier learns from a set of prioritized tasks to glean knowledge, thereby becoming more capable to handle the tasks with substantial distribution shifts that were originally deferred. Theoretical and empirical studies substantiate that MacFRL excels among its GFCL competitors in terms of prediction accuracy and group fair-ness metrics. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  8. Free, publicly-accessible full text available December 11, 2025
  9. Free, publicly-accessible full text available December 9, 2025