Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2025
-
Label Distribution Learning (LDL), as a more general learning setting than generic single-label and multi-label learning, has been commonly used in computer vision and many other applications. To date, existing LDL approaches are designed and applied to data without considering the interdependence between instances. In this paper, we propose a Graph Label Distribution Learning (GLDL) framework, which explicitly models three types of relationships: instance-instance, label-label, and instance-label, to learn the label distribution for networked data. A label-label network is learned to capture label-to-label correlation, through which GLDL can accurately learn label distributions for nodes. Dual graph convolution network (GCN) Co-training with heterogeneous message passing ensures two GCNs, one focusing on instance-instance relationship and the other one targeting label-label correlation, are jointly trained such that instance-instance relationship can help induce label-label correlation and vice versa. Our theoretical study derives the error bound of GLDL. For verification, four benchmark datasets with label distributions for nodes are created using common graph benchmarks. The experiments show that considering dependency helps learn better label distributions for networked data, compared to state-of-the-art LDL baseline. In addition, GLDL not only outperforms simple GCN and graph attention networks (GAT) using distribution loss but is also superior to its variant considering label-label relationship as a static network. GLDL and its benchmarks are the first research endeavors to address LDL for graphs. Code and benchmark data are released for public access.
Free, publicly-accessible full text available March 25, 2025 -
Abstract Businesses are the driving force behind economic systems and are the lifeblood of the community. A business shares striking similarity to a living organism, including birth, infancy, rising, prosperity, and falling. The success of a business is not only important to the owners, but is also critical to the regional/domestic economic system, or even the global economy. Recent years have witnessed many new emerging businesses with tremendous success, such as Google, Apple, Facebook etc., yet millions of businesses also fail or fade out within a rather short period of time. Finding patterns/factors connected to the business rise and fall remains a long lasting question puzzling many economists, entrepreneurs, and government officials. Recent advancement in artificial intelligence, especially machine learning, has lend researchers powers to use data to model and predict business success. However, due to data driven nature of all machine learning methods, existing approaches are rather domain-driven and ad-hoc in their design and validations. In this paper, we propose a systematic review of modeling and prediction of business success. We first outline a triangle framework to showcase three parities connected to the business: Investment-Business-Market (IBM). After that, we align features into three main categories, each of which is focused on modeling a business from a particular perspective, such as sales, management, innovation etc., and further summarize different types of machine learning and deep learning methods for business modeling and prediction. The survey provides a comprehensive review of computational approaches for business performance modeling and prediction.
Free, publicly-accessible full text available February 1, 2025 -
Wooldridge, Michael ; Dy, Jennifer ; Natarajan, Sriraam (Ed.)Free, publicly-accessible full text available February 20, 2025
-
Abstract Manatees are aquatic mammals with voracious appetites. They rely on sea grass as the main food source, and often spend up to eight hours a day grazing. They move slow and frequently stay in groups (i.e. aggregations) in shallow water to search for food, making them vulnerable to environment change and other risks. Accurate counting manatee aggregations within a region is not only biologically meaningful in observing their habit, but also crucial for designing safety rules for boaters, divers, etc., as well as scheduling nursing, intervention, and other plans. In this paper, we propose a deep learning based crowd counting approach to automatically count number of manatees within a region, by using low quality images as input. Because manatees have unique shape and they often stay in shallow water in groups, water surface reflection, occlusion, camouflage etc. making it difficult to accurately count manatee numbers. To address the challenges, we propose to use Anisotropic Gaussian Kernel (AGK), with tunable rotation and variances, to ensure that density functions can maximally capture shapes of individual manatees in different aggregations. After that, we apply AGK kernel to different types of deep neural networks primarily designed for crowd counting, including VGG, SANet, Congested Scene Recognition network (CSRNet), MARUNet etc. to learn manatee densities and calculate number of manatees in the scene. By using generic low quality images extracted from surveillance videos, our experiment results and comparison show that AGK kernel based manatee counting achieves minimum Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The proposed method works particularly well for counting manatee aggregations in environments with complex background.
-
Oh, A ; Naumann, T ; Globerson, A ; Saenko, K ; Hardt, M ; Levine, S (Ed.)
-
Koutra, Danai ; Plant, Claudia ; Gomez-Rodriguez, Manuel ; Baralis, Elena ; Bonchi, Francesco (Ed.)
-
Donta, Praveen Kumar (Ed.)Federated Learning (FL), as a new computing framework, has received significant attentions recently due to its advantageous in preserving data privacy in training models with superb performance. During FL learning, distributed sites first learn respective parameters. A central site will consolidate learned parameters, using average or other approaches, and disseminate new weights across all sites to carryout next round of learning. The distributed parameter learning and consolidation repeat in an iterative fashion until the algorithm converges or terminates. Many FL methods exist to aggregate weights from distributed sites, but most approaches use a static node alignment approach, where nodes of distributed networks are statically assigned, in advance, to match nodes and aggregate their weights. In reality, neural networks, especially dense networks, have nontransparent roles with respect to individual nodes. Combined with random nature of the networks, static node matching often does not result in best matching between nodes across sites. In this paper, we propose, FedDNA, amore » « less
dynamic node alignment federated learning algorithm. Our theme is to find best matching nodes between different sites, and then aggregate weights of matching nodes for federated learning. For each node in a neural network, we represent its weight values as a vector, and use a distance function to find most similar nodes,i.e. , nodes with the smallest distance from other sides. Because finding best matching across all sites are computationally expensive, we further design a minimum spanning tree based approach to ensure that a node from each site will have matched peers from other sites, such that the total pairwise distances across all sites are minimized. Experiments and comparisons demonstrate that FedDNA outperforms commonly used baseline, such as FedAvg, for federated learning.