Given an algorithmic predictor that is "fair" on some source distribution, will it still be fair on an unknown target distribution that differs from the source within some bound? In this paper, we study the transferability of statistical group fairness for machine learning predictors (i.e., classifiers or regressors) subject to bounded distribution shifts. Such shifts may be introduced by initial training data uncertainties, user adaptation to a deployed predictor, dynamic environments, or the use of pre-trained models in new settings. Herein, we develop a bound that characterizes such transferability, flagging potentially inappropriate deployments of machine learning for socially consequential tasks. We first develop a framework for bounding violations of statistical fairness subject to distribution shift, formulating a generic upper bound for transferred fairness violations as our primary result. We then develop bounds for specific worked examples, focusing on two commonly used fairness definitions (i.e., demographic parity and equalized odds) and two classes of distribution shift (i.e., covariate shift and label shift). Finally, we compare our theoretical bounds to deterministic models of distribution shift and against real-world data, finding that we are able to estimate fairness violation bounds in practice, even when simplifying assumptions are only approximately satisfied.
more »
« less
This content will become publicly available on April 11, 2026
Metric-Agnostic Continual Learning for Sustainable Group Fairness
Group Fairness-aware Continual Learning (GFCL) aims to eradicate discriminatory predictions against certain demographic groups in a sequence of diverse learning tasks.This paper explores an even more challenging GFCL problem – how to sustain a fair classifier across a sequence of tasks with covariate shifts and unlabeled data. We propose the MacFRL solution, with its key idea to optimizethe sequence of learning tasks. We hypothesize that high-confident learning can be enabled in the optimized task sequence, where the classifier learns from a set of prioritized tasks to glean knowledge, thereby becoming more capable to handle the tasks with substantial distribution shifts that were originally deferred. Theoretical and empirical studies substantiate that MacFRL excels among its GFCL competitors in terms of prediction accuracy and group fair-ness metrics.
more »
« less
- PAR ID:
- 10595846
- Publisher / Repository:
- AAAI
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Volume:
- 39
- Issue:
- 18
- ISSN:
- 2159-5399
- Page Range / eLocation ID:
- 18648 to 18657
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Blum, A (Ed.)Algorithmic fairness, and in particular the fairness of scoring and classification algorithms, has become a topic of increasing social concern and has recently witnessed an explosion of research in theoretical computer science, machine learning, statistics, the social sciences, and law. Much of the literature considers the case of a single classifier (or scoring function) used once, in isolation. In this work, we initiate the study of the fairness properties of systems composed of algorithms that are fair in isolation; that is, we study fairness under composition. We identify pitfalls of naïve composition and give general constructions for fair composition, demonstrating both that classifiers that are fair in isolation do not necessarily compose into fair systems and also that seemingly unfair components may be carefully combined to construct fair systems. We focus primarily on the individual fairness setting proposed in [Dwork, Hardt, Pitassi, Reingold, Zemel, 2011], but also extend our results to a large class of group fairness definitions popular in the recent literature, exhibiting several cases in which group fairness definitions give misleading signals under composition.more » « less
-
Group-fair learning methods typically seek to ensure that some measure of prediction efficacy for (often historically) disadvantaged minority groups is comparable to that for the majority of the population. When a principal seeks to adopt a group-fair approach to replace another, the principal may face opposition from those who feel they may be harmed by the switch, and this, in turn, may deter adoption. We propose that a potential mitigation to this concern is to ensure that a group-fair model is also popular, in the sense that, for a majority of the target population, it yields a preferred distribution over outcomes compared with the conventional model. In this paper, we show that state of the art fair learning approaches are often unpopular in this sense. We propose several efficient algorithms for postprocessing an existing group-fair learning scheme to improve its popularity while retaining fairness. Through extensive experiments, we demonstrate that the proposed postprocessing approaches are highly effective in practice.more » « less
-
Minimizing risk with fairness constraints is one of the popular approaches to learning a fair classifier. Recent works showed that this approach yields an unfair classifier if the training set is corrupted. In this work, we study the minimum amount of data corruption required for a successful flipping attack. First, we find lower/upper bounds on this quantity and show that these bounds are tight when the target model is the unique unconstrained risk minimizer. Second, we propose a computationally efficient data poisoning attack algorithm that can compromise the performance of fair learning algorithms.more » « less
-
We study the problem of classifier derandomization in machine learning: given a stochastic binary classifier f:X→[0,1], sample a deterministic classifier f̂ :X→{0,1} that approximates the output of f in aggregate over any data distribution. Recent work revealed how to efficiently derandomize a stochastic classifier with strong output approximation guarantees, but at the cost of individual fairness -- that is, if f treated similar inputs similarly, f̂ did not. In this paper, we initiate a systematic study of classifier derandomization with metric fairness guarantees. We show that the prior derandomization approach is almost maximally metric-unfair, and that a simple ``random threshold'' derandomization achieves optimal fairness preservation but with weaker output approximation. We then devise a derandomization procedure that provides an appealing tradeoff between these two: if f is α-metric fair according to a metric d with a locality-sensitive hash (LSH) family, then our derandomized f̂ is, with high probability, O(α)-metric fair and a close approximation of f. We also prove generic results applicable to all (fair and unfair) classifier derandomization procedures, including a bias-variance decomposition and reductions between various notions of metric fairness.more » « less
An official website of the United States government
