Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cann, Isaac (Ed.)ABSTRACT Arsenic (As) metabolism genes are generally present in soils, but their diversity, relative abundance, and transcriptional activity in response to different As concentrations remain unclear, limiting our understanding of the microbial activities that control the fate of an important environmental pollutant. To address this issue, we applied metagenomics and metatranscriptomics to paddy soils showing a gradient of As concentrations to investigate As resistance genes ( ars ) including arsR , acr3 , arsB , arsC , arsM , arsI , arsP , and arsH as well as energy-generating As respiratory oxidation ( aioA ) and reduction ( arrA ) genes. Somewhat unexpectedly, the relative DNA abundances and diversities of ars , aioA , and arrA genes were not significantly different between low and high (∼10 versus ∼100 mg kg −1 ) As soils. Compared to available metagenomes from other soils, geographic distance rather than As levels drove the different compositions of microbial communities. Arsenic significantly increased ars gene abundance only when its concentration was higher than 410 mg kg −1 . In contrast, metatranscriptomics revealed that relative to low-As soils, high-As soils showed a significant increase in transcription of ars and aioA genes, which are induced by arsenite, themore »
-
Over 300 species of naturally occurring-organoarsenicals have been identified with the development of modern analytical techniques. Why there so many environmental organoarsenicals exist is a real enigma. Are they protective or harmful? Or are they simply by-products of existing pathways for non-arsenical compounds? Fundamental unanswered questions exist about their occurrence, prevalence and fate in the environment, metabolisms, toxicology and biological functions. This review focuses on possible answers. As a beginning, we classified them into two categories: water-soluble and lipid-soluble organoarsenicals (arsenolipids). Continual improvements in analytical techniques will lead to identification of additional organoarsenicals. In this review, we enumerate identified environmental organoarsenicals and speculate about their pathways of synthesis and degradation based on structural data and previous studies. Organoarsenicals are frequently considered to be nontoxic, yet trivalent methylarsenicals, synthetic aromatic arsenicals and some pentavalent arsenic-containing compounds have been shown to be highly toxic. The biological functions of some organoarsenicals have been defined. For example, arsenobetaine acts as an osmolyte, and membrane arsenolipids have a phosphate-sparing role under phosphate-limited conditions. However, the toxicological properties and biological functions of most organoarsenicals are largely unknown. The objective of this review is to summarize the toxicological and physiological properties and to provide novel insights intomore »