skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Zhu, Yuhao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 17, 2024
  2. Free, publicly-accessible full text available June 17, 2024
  3. Free, publicly-accessible full text available July 26, 2024
  4. Battery life is an increasingly urgent challenge for today's untethered VR and AR devices. However, the power efficiency of head-mounted displays is naturally at odds with growing computational requirements driven by better resolution, refresh rate, and dynamic ranges, all of which reduce the sustained usage time of untethered AR/VR devices. For instance, the Oculus Quest 2, under a fully-charged battery, can sustain only 2 to 3 hours of operation time. Prior display power reduction techniques mostly target smartphone displays. Directly applying smartphone display power reduction techniques, however, degrades the visual perception in AR/VR with noticeable artifacts. For instance, the "power-saving mode" on smartphones uniformly lowers the pixel luminance across the display and, as a result, presents an overall darkened visual perception to users if directly applied to VR content. Our key insight is that VR display power reduction must be cognizant of the gaze-contingent nature of high field-of-view VR displays. To that end, we present a gaze-contingent system that, without degrading luminance, minimizes the display power consumption while preserving high visual fidelity when users actively view immersive video sequences. This is enabled by constructing 1) a gaze-contingent color discrimination model through psychophysical studies, and 2) a display power model (with respect to pixel color) through real-device measurements. Critically, due to the careful design decisions made in constructing the two models, our algorithm is cast as a constrained optimization problem with a closed-form solution, which can be implemented as a real-time, image-space shader. We evaluate our system using a series of psychophysical studies and large-scale analyses on natural images. Experiment results show that our system reduces the display power by as much as 24% (14% on average) with little to no perceptual fidelity degradation. 
    more » « less
  5. Despite deep learning approaches have achieved promising successes in 2D optical flow estimation, it is a challenge to accurately estimate scene flow in 3D space as point clouds are inherently lacking topological information. In this paper, we aim at handling the problem of self-supervised 3D scene flow estimation based on dynamic graph convolutional neural networks (GCNNs), namely 3D SceneFlowNet. To better learn geometric relationships among points, we introduce EdgeConv to learn multiple-level features in a pyramid from point clouds and a self-attention mechanism to apply the multi-level features to predict the final scene flow. Our trained model can efficiently process a pair of adjacent point clouds as input and predict a 3D scene flow accurately without any supervision. The proposed approach achieves superior performance on both synthetic ModelNet40 dataset and real LiDAR scans from KITTI Scene Flow 2015 datasets. 
    more » « less