skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhu, Zichen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. Free, publicly-accessible full text available January 10, 2026
  3. Free, publicly-accessible full text available December 3, 2025
  4. Free, publicly-accessible full text available June 9, 2025
  5. Data-intensive applications have fueled the evolution oflog-structured merge (LSM)based key-value engines that employ theout-of-placeparadigm to support high ingestion rates with low read/write interference. These benefits, however, come at the cost oftreating deletes as second-class citizens. A delete operation inserts atombstonethat invalidates older instances of the deleted key. State-of-the-art LSM-engines do not provide guarantees as to how fast a tombstone will propagate topersist the deletion. Further, LSM-engines only support deletion on the sort key. To delete on another attribute (e.g., timestamp), the entire tree is read and re-written, leading to undesired latency spikes and increasing the overall operational cost of a database. Efficient and persistent deletion is key to support: (i) streaming systems operating on a window of data, (ii) privacy with latency guarantees on data deletion, and (iii)en massecloud deployment of data systems. Further, we document that LSM-based key-value engines perform suboptimally in the presence of deletes in a workload. Tombstone-driven logical deletes, by design, are unable to purge the deleted entries in a timely manner, and retaining the invalidated entries perpetually affects the overall performance of LSM-engines in terms of space amplification, write amplification, and read performance. Moreover, the potentially unbounded latency for persistent deletes brings in critical privacy concerns in light of the data privacy protection regulations, such as theright to be forgottenin EU’s GDPR, theright to deletein California’s CCPA and CPRA, anddeletion rightin Virginia’s VCDPA. Toward this, we introduce the delete design space for LSM-trees and highlight the performance implications of the different classes of delete operations. To address these challenges, in this article, we build a new key-value storage engine,Lethe+, that uses a very small amount of additional metadata, a set of new delete-aware compaction policies, and a new physical data layout that weaves the sort and the delete key order. We show thatLethe+supports any user-defined threshold for the delete persistence latency offeringhigher read throughput(1.17× -1.4×) andlower space amplification(2.1× -9.8×), with a modest increase in write amplification (between 4% and 25%) that can be further amortized to less than 1%. In addition,Lethe+supports efficient range deletes on asecondary delete keyby dropping entire data pages without sacrificing read performance or employing a costly full tree merge. 
    more » « less