skip to main content


Search for: All records

Creators/Authors contains: "Zhuang, Jun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2024
  2. In recent years, plentiful evidence illustrates that Graph Con- volutional Networks (GCNs) achieve extraordinary accom- plishments on the node classification task. However, GCNs may be vulnerable to adversarial attacks on label-scarce dy- namic graphs. Many existing works aim to strengthen the ro- bustness of GCNs; for instance, adversarial training is used to shield GCNs against malicious perturbations. However, these works fail on dynamic graphs for which label scarcity is a pressing issue. To overcome label scarcity, self-training attempts to iteratively assign pseudo-labels to highly confi- dent unlabeled nodes but such attempts may suffer serious degradation under dynamic graph perturbations. In this paper, we generalize noisy supervision as a kind of self-supervised learning method and then propose a novel Bayesian self- supervision model, namely GraphSS, to address the issue. Extensive experiments demonstrate that GraphSS can not only affirmatively alert the perturbations on dynamic graphs but also effectively recover the prediction of a node classifier when the graph is under such perturbations. These two advan- tages prove to be generalized over three classic GCNs across five public graph datasets. 
    more » « less
  3. Supervised learning, while deployed in real-life scenarios, often encounters instances of unknown classes. Conventional algorithms for training a supervised learning model do not provide an option to detect such instances, so they miss-classify such instances with 100% probability. Open Set Recognition (OSR) and Non-Exhaustive Learning (NEL) are potential solutions to overcome this problem. Most existing methods of OSR first classify members of existing classes and then identify instances of new classes. However, many of the existing methods of OSR only makes a binary decision, i.e., they only identify the existence of the unknown class. Hence, such methods cannot distinguish test instances belonging to incremental unseen classes. On the other hand, the majority of NEL methods often make a parametric assumption over the data distribution, which either fail to return good results, due to the reason that real-life complex datasets may not follow a well-known data distribution. In this paper, we propose a new online non-exhaustive learning model, namely, Non-Exhaustive Gaussian Mixture Generative Adversarial Networks (NE-GM-GAN) to address these issues. Our proposed model synthesizes Gaussian mixture based latent representation over a deep generative model, such as GAN, for incremental detection of instances of emerging classes in the test data. Extensive experimental results on several benchmark datasets show that NE-GM-GAN significantly outperforms the state-of-the-art methods in detecting instances of novel classes in streaming data. 
    more » « less
  4. As the internet and social media continue to become increasingly used for sharing break- ing news and important updates, it is with great motivation to study the behaviors of online users during crisis events. One of the biggest issues with obtaining information online is the veracity of such content. Given this vulnerability, misinformation becomes a very danger- ous and real threat when spread online. This study investigates misinformation debunking efforts and fills the research gap on cross-platform information sharing when misinforma- tion is spread during disasters. The false rumor “immigration status is checked at shelters” spread in both Hurricane Harvey and Hurricane Irma in 2017 and was analyzed in this paper based on a collection of 12,900 tweets. By studying the rumor control efforts made by thousands of accounts, we found that Twitter users respond and interact the most with tweets from verified Twitter accounts, and especially government organizations. Results on sourcing analysis show that the majority of Twitter users who utilize URLs in their post- ings are employing the information in the URLs to help debunk the false rumor. The most frequently cited information comes from news agencies when analyzing both URLs and domains. This paper provides novel insights into rumor control efforts made through social media during natural disasters and also the information sourcing and sharing behaviors that users exhibit during the debunking of false rumors. 
    more » « less
  5. Social media is being increasingly utilized to spread breaking news and updates during disasters of all magnitudes. Unfortunately, due to the unmoderated nature of social media platforms such as Twitter, rumors and misinformation are able to propagate widely. Given this, a surfeit of research has studied rumor diffusion on social media, especially during natural disasters. In many studies, researchers manually code social media data to further analyze the patterns and diffusion dynamics of users and misinformation. This method requires many human hours, and is prone to significant incorrect classifications if the work is not checked over by another individual. In our studies, we fill the research gap by applying seven different machine learning algorithms to automatically classify misinformed Twitter data that is spread during disaster events. Due to the unbalanced nature of the data, three different balancing algorithms are also applied and compared. We collect and drive the classifiers with data from the Manchester Arena bombing (2017), Hurricane Harvey (2017), the Hawaiian incoming missile alert (2018), and the East Coast US tsunami alert (2018). Over 20,000 tweets are classified based on the veracity of their content as either true, false, or neutral, with overall accuracies exceeding 89%. 
    more » « less