skip to main content

Search for: All records

Creators/Authors contains: "Zhuang, Yuling"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aydeniz, Mehmet (Ed.)
    Argumentation is a practice that spans STEM disciplines and is an explicit goal for K12 students in reform-based standards documents. The purpose of this study was to investigate the applicability of Douglas Walton’s theoretical model for describing the types of argument dialogue encountered in elementary classrooms focused on learning concepts in science, mathematics, and computer coding. We examined two elementary teachers’ STEM classrooms to explore the types of argument dialogue that were evident. We found evidence of six types of dialogues: persuasion, negotiation, information-seeking, deliberation, inquiry, and discovery based on Walton’s model. Our findings demonstrate the applicability of Walton’s types of argument dialogue to argumentation in elementary STEM contexts. Even though our work takes place in the United States with teachers of children in grades 3-5 (ages 8-10 years), we believe our approach is applicable to other dialogues found in K12 STEM education. We postulate that students having opportunities to engage in arguments with a diverse range of goals (e.g., to prove a hypothesis, to persuade, or to exchange information) is important for their development in learning how to argue in STEM.

    more » « less
  2. Sacristán, A.I. ; Cortés-Zavala, J.C. ; Ruiz-Arias, P.M. (Ed.)
    Teachers in the elementary grades often teach all subjects and are expected to have appropriate content knowledge of a wide range of disciplines. Current recommendations suggest teachers should integrate multiple disciplines into the same lesson, for instance, when teaching integrated STEM lessons. Although there are many similarities between STEM fields, there are also epistemological differences to be understood by students and teachers. This study investigated teachers’ beliefs about teaching mathematics and science using argumentation and the epistemological and contextual factors that may have influenced these beliefs. Teachers’ beliefs about different epistemological underpinnings of mathematics and science, along with contextual constraints, led to different beliefs and intentions for practice with respect to argumentation in these disciplines. The contextual constraint of testing and the amount of curriculum the teachers perceived as essential focused more attention on the teaching of mathematics, which could be seen as benefiting student learning of mathematics. On the other hand, the perception of science as involving wonder, curiosity, and inherently positive and interesting ideas may lead to the creation of a more positive learning environment for the teaching of science. These questions remain open and need to be studied further: What are the consequences of perceiving argumentation in mathematics as limited to concepts already well-understood? Can integrating the teaching of mathematics and science lead to more exploratory and inquiry-based teaching of mathematical ideas alongside scientific ones? 
    more » « less