skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 15 until 2:00 AM ET on Saturday, November 16 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Zhuo, Ya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    There is a significant need to identify cyan-emitting phosphors capable of filling the “cyan-gap” (480–520 nm) in full-visible-spectrum phosphor-converted white light-emitting diodes (pc-wLEDs). Here, a new broadband cyan-emitting phosphor that enables addressing of this challenge is reported. The compound, Ba 2 CaB 2 Si 4 O 14 :Ce 3+ , presents a bright cyan emission peaking at 478 nm with a large full width at half maximum of 142 nm (6053 cm −1 ), and minimal thermal quenching. The photoluminescence properties originate from Ce 3+ residing at two different crystallographic sites, a [BaO 9 ] distorted elongated square pyramid and a [CaO 6 ] trigonal prism. This combination results in an efficient, broad emission covering the blue to green region of the visible spectrum. Fabricating a simple dichromatic ultraviolet ( λ ex = 370 nm) pumped pc-wLED using Ba 2 CaB 2 Si 4 O 14 :Ce 3+ along with a commercially available red phosphor demonstrates full-visible-spectrum white light with high color rendering index ( R a > 90) and tunable correlated color temperature, showing the potential of this material for achieving high-quality LED-based lighting. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. Complex alkaline earth silicates have been extensively studied as rare-earth substituted phosphor hosts for use in solid-state lighting. One of the biggest challenges facing the development of new phosphors is understanding the relationship between the observed optical properties and the crystal structure. Fortunately, recent improvements in characterization techniques combined with advances in computational methodologies provide the research tools necessary to conduct a comprehensive analysis of these systems. In this work, a new Ce 3+ substituted phosphor is developed using Ba 5 Si 8 O 21 as the host crystal structure. The compound is evaluated using a combination of experimental and computational methods and shows Ba 5 Si 8 O 21 :Ce 3+ adopts a monoclinic crystal structure that was confirmed through Rietveld refinement of high-resolution synchrotron powder X-ray diffraction data. Photoluminescence spectroscopy reveals a broad-band blue emission centered at ∼440 nm with an absolute quantum yield of ∼45% under ultraviolet light excitation ( λ ex = 340 nm). This phosphor also shows a minimal chromaticity-drift but with moderate thermal quenching of the emission peak at elevated temperatures. The modest optical response of this phase is believed to stem from a combination of intrinsic structural complexity and the formation of defects because of the aliovalent rare-earth substitution. Finally, computational modeling provides essential insight into the site preference and energy level distribution of Ce 3+ in this compound. These results highlight the importance of using experiment and computation in tandem to interpret the relationship between observed optical properties and the crystal structures of all rare-earth substituted complex phosphors. 
    more » « less