Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 30, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
We develop multilevel methods for interface-driven multiphysics problems that can be coupled across dimensions and where complexity and strength of the interface coupling deteriorates the performance of standard methods. We focus on aggregation-based algebraic multigrid methods with custom smoothers that preserve the coupling information on each coarse level. We prove that, with the proper choice of subspace splitting, we obtain uniform convergence in discretization and physical parameters in the two-level setting. Additionally, we show parameter robustness and scalability with regard to the number of the degrees of freedom of the system on several numerical examples related to the biophysical processes in the brain, namely, the electric signaling in excitable tissue modeled by bidomain, the extracellular-membrane-intracellular (EMI) model, and reduced EMI equations.more » « less
-
We introduce the software toolbox HAZniCS for solving interface-coupled multiphysics problems. HAZniCS is a suite of modules that combines the well-known FEniCS framework for finite element discretization with solver and graph library HAZmath. The focus of this article is on the design and implementation of robust and efficient solver algorithms which tackle issues related to the complex interfacial coupling of the physical problems often encountered in applications in brain biomechanics. The robustness and efficiency of the numerical algorithms and methods is shown in several numerical examples, namely the Darcy-Stokes equations that model the flow of cerebrospinal fluid in the human brain and the mixed-dimensional model of electrodiffusion in the brain tissue.more » « less
-
Abstract This work presents an overview of the most relevant results obtained by the authors regarding the numerical solution of the Biot’s consolidation problem by preconditioning techniques. The emphasis here is on the design of parameter-robust preconditioners for the efficient solution of the algebraic system of equations resulting after proper discretization of such poroelastic problems. The classical two- and three-field formulations of the problem are considered, and block preconditioners are presented for some of the discretization schemes that have been proposed by the authors for these formulations. These discretizations have been proved to be well-posed with respect to the physical and discretization parameters, what provides a framework to develop preconditioners that are robust with respect to such parameters as well. In particular, we construct both norm-equivalent (block diagonal) and field-of-value-equivalent (block triangular) preconditioners, which are proved to be parameter-robust. The theoretical results on this parameter-robustness are demonstrated by considering typical benchmark problems in the literature for Biot’s model.more » « less
-
Georgiev, Ivan; Datcheva, Maria; Georgiev, Krassimir; Nikolov, Geno (Ed.)
An official website of the United States government

Full Text Available